Skip to main content

Automated 3D Skeleton Winding Process for Continuous-Fiber-Reinforcements in Structural Thermoplastic Components

  • Conference paper
  • First Online:
Advances in Polymer Processing 2020

Abstract

Continuous fiber reinforcements can significantly improve the mechanical properties of thermoplastic injection-molded components compared to short and long fiber reinforcements. By aligning the continuous fibers in the main load paths, the reinforcement can be optimally exploited. The 3D skeleton winding process (3DSW) is a robot-based filament winding technique in which defined load application points are connected with wound closed loop structures. The introduction of thermoplastic commingled yarns in the winding process allows an efficient fiber impregnation to produce fiber skeletons that can be overmolded in an injection molding process to locally reinforce the final component. The combination of a robot-based winding process and injection molding as a process for large-scale production enables the use of thermoplastic materials for complex structural applications in higher quantities.

This paper presents the 3DSW manufacturing process and introduces a simple loop and a generic 3D test specimen. Fundamental investigations into these structural components with overmolded fiber skeletons demonstrate the potential of continuous fibers in injection molded components made from PP and PPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehrenstein, G.W.: Faserverbund-Kunststoffe – Werkstoffe – Verarbeitung – Eigenschaften. Hanser, München (2006)

    Book  Google Scholar 

  2. Witten, E. (Eds.): Handbuch Faserverbundkunststoffe/Composites – Grundlagen, Verarbeitung, Anwendungen. AVK, Industrievereinigung Verstärkte Kunststoffe. Springer Vieweg, Wiesbaden (2014)

    Google Scholar 

  3. Flemming, M., Roth, S.: Faserverbundbauweisen Eigenschaften – Mechanische, konstruktive, thermische, elektrische, ökologische, wirtschaftliche Aspekte. Springer, Berlin (2003)

    Google Scholar 

  4. Verfahren und Vorrichtung zur Herstellung eines mit Endlosfasern verstärkten Polymer-Formteils. Erfinder: Krause, W., Reif, M., Walch, M. und Henning, F. Anmeldung: 24. November 2004, EP 1 568 473 B1

    Google Scholar 

  5. Huber, T.: Einfluss lokaler Endlosfaserverstärkungen auf das Eigenschaftsprofil struktureller Spritzgießbauteile, Wissenschaftliche Schriftenreihe des Fraunhofer ICTBd. 60. Fraunhofer, Stuttgart (2014)

    Google Scholar 

  6. Minsch, N., Herrmann, F.H., Gereke, T., et al.: Analysis of filament winding processes and potential equipment technologies. Procedia CIRP 66, 125–130 (2017)

    Article  Google Scholar 

  7. Heinzle, V., Huber, T., Henning, F., et al.: Process development of injection molded parts with wound fiber structures for local reinforcement. In: AIP Conference Proceedings. American Institute of Physics, Nuremberg, Germany, pp. 736–740 (2014)

    Google Scholar 

  8. Eyerer, P., Elsner, P., Hirth, T.: Polymer Engineering – Technologien und Praxis. VDI-Buch, Springer, Berlin (2008)

    Google Scholar 

  9. DIN EN ISO 527-1: Kunststoffe – Bestimmung der Zugeigenschaften – Teil 1 Allgemeine Grundsätze

    Google Scholar 

  10. Braskem Europe GmbH: Polyolefins – product and properties Ausgabe September (2013)

    Google Scholar 

  11. Lyondellbasell: Technical Data Sheet – Hostacom HRG 328T NAT Ausgabe Juli (2018)

    Google Scholar 

  12. Bonnet, M.: Kunststoffe in der Ingenieuranwendung – Verstehen und zuverlässig auswählen. Vieweg+Teubner Verlag, GWV Fachverlage GmbH Wiesbaden, Wiesbaden (2009)

    Google Scholar 

  13. DSM: Technical Data Sheet – Xytron U3020E Ausgabe September (2017)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Core Industrial Technology Development Program (Grant No. 10052896) funded by the Ministry of Trade, Industry and Energy (MOTIE) of Korea through Korea Evaluation Institute of Industrial Technology (KEIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Beck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beck, B., Tawfik, H., Haas, J., Park, YB., Henning, F. (2020). Automated 3D Skeleton Winding Process for Continuous-Fiber-Reinforcements in Structural Thermoplastic Components. In: Hopmann, C., Dahlmann, R. (eds) Advances in Polymer Processing 2020. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60809-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60809-8_13

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60808-1

  • Online ISBN: 978-3-662-60809-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics