Skip to main content

Magneto-Responsive Nanomaterials for Medical Therapy in Preclinical and Clinical Settings

  • Chapter
  • First Online:
  • 470 Accesses

Abstract

Magneto-responsive nanomaterials proved to be extremely beneficial in a whole bunch of industrial and commercial applications, ranging from catalytic systems, magnetic storage, photonic and electronic devices to biological and biomedical theranostics. In particular, the preparation of magnetic nanoparticles (MNPs), mainly made of iron oxides, for both diagnostics (detection, imaging, biosensing) and therapeutics (hyperthermia, magnetic targeting, and drug delivery) has occupied a privileged position among other nanocomposites. Due to their nanoscale dimensions, unique physiochemical properties, intrinsic magnetic characteristics, biocompatibilities, and abilities to function on the biomolecular and cellular levels, MNPs have been thoroughly investigated in medicine as magnetic imaging contrast-enhancing probes, hyperthermia agents, and magnetic-guided drug delivery carriers for disease theranostics. By avoiding healthy tissues, enabling reduced toxicities, and controlling the delivery of chemotherapeutics to specific locations, MNPs has indeed great potentials to increase drug therapeutic efficacies and minimize their adverse side effects giving promise for next-generation clinical nanomedicines for cancer treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mann S (2009) Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater 8:781–792

    Article  CAS  Google Scholar 

  2. Fan H, Yang K, Boye DM, Sigmon T, Malloy KJ, Xu H et al (2004) Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays. Science 304:567–571

    Article  CAS  Google Scholar 

  3. Wu W, Jiang CZ, Roy VAL (2016) Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale 8:19421–19474

    Article  CAS  Google Scholar 

  4. Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62:1064–1079

    Article  CAS  Google Scholar 

  5. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  6. Estelrich J, Escribano E, Queralt J, Busquets MA (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16:8070–8101

    Article  CAS  Google Scholar 

  7. Huang J, Li Y, Orza A, Lu Q, Guo P, Wang L et al (2016) Magnetic nanoparticle facilitated drug delivery for Cancer therapy with targeted and image-guided approaches. Adv Funct Mater 26:3818–3836

    Article  CAS  Google Scholar 

  8. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  CAS  Google Scholar 

  9. Duncan R (2011) Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol 22:492–501

    Article  CAS  Google Scholar 

  10. Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1:10–29

    Article  Google Scholar 

  11. Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44:853–862

    Article  CAS  Google Scholar 

  12. Ling D, Lee N, Hyeon T (2015) Chemical synthesis and assembly of uniformly sized Iron oxide nanoparticles for medical applications. Acc Chem Res 48:1276–1285

    Article  CAS  Google Scholar 

  13. Jin R (2008) Super robust nanoparticles for biology and biomedicine. Angew Chem Int Ed 47:6750–6753

    Article  CAS  Google Scholar 

  14. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107

    Article  CAS  Google Scholar 

  15. El-Boubbou K, Zhu David C, Vasileiou C, Borhan B, Prosperi D, Li W et al (2010) Magnetic glyco-nanoparticles: a tool to detect, differentiate, and unlock the glyco-codes of cancer via magnetic resonance imaging. J Am Chem Soc 132:4490–4499

    Article  CAS  Google Scholar 

  16. El-Boubbou K, Huang X (2011) Glyco-nanomaterials: translating insights from the sugar-code to biomedical applications. Curr Med Chem 18:2060–2078

    Article  CAS  Google Scholar 

  17. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S et al (2005) Nanoscale size effect of magnetic Nanocrystals and their utilization for Cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732–5733

    Article  CAS  Google Scholar 

  18. Gao BJ, Li L, Ho PL, Mak GC, Gu H, Xu B (2006) Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of Bacteria in human blood. Adv Mater 18:3145–3148

    Article  CAS  Google Scholar 

  19. Yoo D, Jeong H, Noh S-H, Lee J-H, Cheon J (2013) Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angew Chem Int Ed 52:13047–13051

    Article  CAS  Google Scholar 

  20. Hathaway HJ, Butler KS, Adolphi NL, Lovato DM, Belfon R, Fegan D et al (2011) Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors. Breast Cancer Res 13:R108

    Article  CAS  Google Scholar 

  21. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Article  CAS  Google Scholar 

  22. De Crozals G, Bonnet R, Farre C, Chaix C (2016) Nanoparticles with multiple properties for biomedical applications: a strategic guide. Nano Today 11:435–463

    Article  CAS  Google Scholar 

  23. Wahajuddin AS (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445

    Article  CAS  Google Scholar 

  24. Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41:2575–2589

    Article  CAS  Google Scholar 

  25. Peng E, Wang F, Xue JM (2015) Nanostructured magnetic nanocomposites as MRI contrast agents. J Mater Chem B 3:2241–2276

    Article  CAS  Google Scholar 

  26. Jun Y-w, Lee J-H, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47:5122–5135

    Article  CAS  Google Scholar 

  27. Shen Z, Wu A, Chen X (2016) Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm 14:1352, ASAP

    Article  CAS  Google Scholar 

  28. Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for Cancer imaging and therapy. Acc Chem Res 44:883–892

    Article  CAS  Google Scholar 

  29. National Cancer Institute (2015) Types of treatment. https://www.cancer.gov/

  30. Jackson SE, Chester JD (2015) Personalised cancer medicine. Int J Cancer 137:262–266

    Article  CAS  Google Scholar 

  31. Schork NJ (2015) Personalized medicine: time for one-person trials. Nature 520:609–611

    Article  CAS  Google Scholar 

  32. Sengupta S (2017) Cancer Nanomedicine: lessons for Immuno-oncology. Trends Cancer 3:551–560

    Article  CAS  Google Scholar 

  33. Barenholz Y (2012) Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134

    Article  CAS  Google Scholar 

  34. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane(®) ABI-007) in the treatment of breast cancer. Int J Nanomedicine 4:99–105

    CAS  Google Scholar 

  35. Harisinghani MG, Saksena M, Ross RW, Tabatabaei S, Dahl D, McDougal S et al (2005) A pilot study of lymphotrophic nanoparticle-enhanced magnetic resonance imaging technique in early stage testicular cancer: a new method for noninvasive lymph node evaluation. Urology 66:1066–1071

    Article  Google Scholar 

  36. Min Y, Caster JM, Eblan MJ, Wang AZ (2015) Clinical translation of nanomedicine. Chem Rev 115:11147–11190

    Article  CAS  Google Scholar 

  37. Freeman MW, Arrot A, Watson HHL (1960) Magnetism in medicine. J Appl Phys 31:S404

    Article  Google Scholar 

  38. Widder KJ, Morris RM, Poore GA, Howard DP, Senyei AE (1983) Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur J Cancer Clin Oncol 19:135–139

    Article  CAS  Google Scholar 

  39. Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C et al (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648

    CAS  Google Scholar 

  40. Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C et al (2006) Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 35:446–450

    Article  CAS  Google Scholar 

  41. Goodwin SC, Bittner CA, Peterson CL, Wong G (2001) Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxicol Sci 60:177–183

    Article  CAS  Google Scholar 

  42. Lübbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW et al (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56:4694–4701

    Google Scholar 

  43. Koda J, Venook A, Walser E (2002) A multicenter, phase I/II trial of hepatic intra-arterial delivery of doxorubicin hydrochloride adsorbed to magnetic targeted carriers in patients with hepatocellular carcinoma. Eur J Cancer 38:S18

    Google Scholar 

  44. Wilson MW, Kerlan RK, Fidelman NA, Venook AP, LaBerge JM, Koda J et al (2004) Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/ conventional angiography suite – initial experience with four patients. Radiology 230:287–293

    Article  Google Scholar 

  45. Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K et al (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4′-Epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56:4686–4693

    Google Scholar 

  46. Krukemeyer MG, Krenn V, Jakobs M, Wagner W (2012) Magnetic drug targeting in a rhabdomyosarcoma rat model using magnetite-dextran composite nanoparticle-bound mitoxantrone and 0.6 tesla extracorporeal magnets − sarcoma treatment in progress. J Drug Target 20:185–193

    Article  CAS  Google Scholar 

  47. Kumar M, Yigit M, Dai G, Moore A, Medarova Z (2010) Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res 70:7553–7561

    Article  CAS  Google Scholar 

  48. Krukemeyer MG, Krenn V, Jakobs M, Wagner W (2012) Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver-magnetic nanoparticles in cancer treatment. J Surg Res 175:35–43

    Article  CAS  Google Scholar 

  49. Li Z, Dong K, Huang S, Ju E, Liu Z, Yin M et al (2014) A smart Nanoassembly for multistage targeted drug delivery and magnetic resonance imaging. Adv Funct Mater 24:3612–3620

    Article  CAS  Google Scholar 

  50. Muthana M, Kennerley AJ, Hughes R, Fagnano E, Richardson J, Paul M et al (2015) Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat Commun 6:8009

    Article  CAS  Google Scholar 

  51. Bañobre-López M, Teijeiro A, Rivas J (2013) Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother 18:397–400

    Article  Google Scholar 

  52. Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808

    Article  CAS  Google Scholar 

  53. Derfus AM, von Maltzahn G, Harris TJ, Duza T, Vecchio KS, Ruoslahti E et al (2007) Remotely triggered release from magnetic nanoparticles. Adv Mater 19:3932–3936

    Article  CAS  Google Scholar 

  54. Young JH, Wang M, Brezovich IA (1980) Frequency/depth-penetration considerations in hyperthermia by magnetically induced currents. Electron Lett 16:358–359

    Article  Google Scholar 

  55. Kennedy JE (2005) High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 5:321

    Article  CAS  Google Scholar 

  56. Ziegelberger G (2006) ICNIRP statement on far infrared radiation exposure. Health Phys 91:630–645

    Article  CAS  Google Scholar 

  57. Salunkhe AB, Khot VM, Pawar SH (2014) Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem 14:572–594

    Article  CAS  Google Scholar 

  58. Jeon MJ, Ahn C-H, Kim H, Chung IJ, Jung S, Kim Y-H et al (2014) The intratumoral administration of ferucarbotran conjugated with doxorubicin improved therapeutic effect by magnetic hyperthermia combined with pharmacotherapy in a hepatocellular carcinoma model. J Exp Clin Cancer Res 33:57

    Article  CAS  Google Scholar 

  59. Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes PJ (2010) Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life 1:10

    Article  CAS  Google Scholar 

  60. Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today 19:157–168

    Article  CAS  Google Scholar 

  61. Jordan A, Scholz R, Wust P, Fähling H, Krause J, Wlodarczyk W et al (1997) Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperth 13:587–605

    Article  CAS  Google Scholar 

  62. Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H et al (1999) Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Magn Mater 194:185–196

    Article  CAS  Google Scholar 

  63. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103:317–324

    Article  Google Scholar 

  64. Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R et al (2007) Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperth 23:315–323

    Article  CAS  Google Scholar 

  65. Johannsen M, Thiesen B, Wust P, Jordan A (2010) Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperth 26:790–795

    Article  Google Scholar 

  66. Sanson C, Diou O, Thévenot J, Ibarboure E, Soum A, Brûlet A et al (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5:1122–1140

    Article  CAS  Google Scholar 

  67. Chang P, Purushotham S, Rumpel H, Kee I, Ng R, Chow P et al (2014) Novel dual magnetic drug targeting and hyperthermia therapy in hepatocellular carcinoma with thermosensitive polymer-coated nanoparticles. J Gastrointest Dig Syst 4:198

    Google Scholar 

  68. Gewirtz DA, Bristol ML, Yalowich JC (2010) Toxicity issues in Cancer drug development. Curr Opin Investig Drugs 11:612–614

    CAS  Google Scholar 

  69. Li S-D, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5:496–504

    Article  CAS  Google Scholar 

  70. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  Google Scholar 

  71. Hobbs SK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    Article  CAS  Google Scholar 

  72. Adiseshaiah PP, Hall JB, McNeil SE (2009) Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:99–112

    Article  Google Scholar 

  73. Cortajarena AL, Ortega D, Ocampo SM, Gonzalezgarcía A, Couleaud P, Miranda R et al (2014) Engineering iron oxide nanoparticles for clinical settings. Nanobiomedicine 1:58841

    Article  Google Scholar 

  74. Kaminski MS, Tuck M, Estes J, Kolstad A, Ross CW, Zasadny K et al (2005) 131I-Tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 352:441–449

    Article  CAS  Google Scholar 

  75. Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B (2003) Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 100:6039

    Article  CAS  Google Scholar 

  76. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT et al (2009) The prioritization of Cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337

    Article  Google Scholar 

  77. Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN (2009) The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 14:320–368

    Article  CAS  Google Scholar 

  78. Sugahara KN (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328:1031–1035

    Article  CAS  Google Scholar 

  79. Yang W, Luo D, Wang S, Wang R, Chen R, Liu Y et al (2008) TMTP1, a novel tumor-homing peptide specifically targeting metastasis. Clin Cancer Res 14:5494

    Article  CAS  Google Scholar 

  80. Zhang C, Jugold M, Woenne EC, Lammers T, Morgenstern B, Mueller MM et al (2007) Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res 67:1555–1562

    Article  CAS  Google Scholar 

  81. Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R (2004) Nanoparticle-Aptamer Bioconjugates. Cancer Res 64:7668

    Article  CAS  Google Scholar 

  82. Wang Z, Zhou C, Xia J, Via B, Xia Y, Zhang F et al (2013) Fabrication and characterization of a triple functionalization of graphene oxide with Fe3O4, folic acid and doxorubicin as dual-targeted drug nanocarrier. Colloids Surf B: Biointerfaces 106:60–65

    Article  CAS  Google Scholar 

  83. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  84. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, Vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  85. Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X et al (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 80:333–341

    Article  CAS  Google Scholar 

  86. Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–6293

    Article  CAS  Google Scholar 

  87. Li J, He Y, Sun W, Luo Y, Cai H, Pan Y et al (2014) Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 35:3666–3677

    Article  CAS  Google Scholar 

  88. Aubery C, Solans C, Prevost S, Gradzielski M, Sanchez-Dominguez M (2013) Microemulsions as reaction media for the synthesis of mixed oxide nanoparticles: relationships between microemulsion structure, reactivity, and nanoparticle characteristics. Langmuir 29:1779–1789

    Article  CAS  Google Scholar 

  89. El-Boubbou K, Zhu DC, Vasileiou C, Borhan B, Prosperi D, Li W et al (2010) Magnetic glyco-nanoparticles: a tool to detect, differentiate, and unlock the glyco-codes of cancer via magnetic resonance imaging. J Am Chem Soc 132:4490–4499

    Article  CAS  Google Scholar 

  90. El-Boubbou K, El-Dakdouki MH, Kamat M, Huang R, Abela GS, Kiupel M et al (2014) CD44 targeting magnetic glyconanoparticles for atherosclerotic plaque imaging. Pharm Res 31:1426–1437

    Article  CAS  Google Scholar 

  91. Calero M, Gutiérrez L, Salas G, Luengo Y, Lázaro A, Acedo P et al (2014) Efficient and safe internalization of magnetic iron oxide nanoparticles: two fundamental requirements for biomedical applications. Nanomedicine 10:733–743

    Article  CAS  Google Scholar 

  92. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Article  Google Scholar 

  93. Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL et al (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26:729–738

    Article  CAS  Google Scholar 

  94. Itoh H, Sugimoto T (2003) Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interface Sci 265:283–295

    Article  CAS  Google Scholar 

  95. Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493

    Article  CAS  Google Scholar 

  96. Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44:842–852

    Article  CAS  Google Scholar 

  97. Hahn PF, Stark DD, Lewis JM, Saini S, Elizondo G, Weissleder R et al (1990) First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging. Radiology 175:695–700

    Article  CAS  Google Scholar 

  98. Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    Article  CAS  Google Scholar 

  99. Smith EA, Chen W (2008) How to prevent the loss of surface functionality derived from aminosilanes. Langmuir 24:12405–12409

    Article  CAS  Google Scholar 

  100. Yamaura M, Camilo RL, Sampaio LC, Macêdo MA, Nakamura M, Toma HE (2004) Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mater 279:210–217

    Article  CAS  Google Scholar 

  101. Bruce IJ, Sen T (2005) Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 21:7029–7035

    Article  CAS  Google Scholar 

  102. Mahdavi M, Ahmad M, Haron M, Namvar F, Nadi B, Rahman M et al (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–7548

    Article  CAS  Google Scholar 

  103. Yee C, Kataby G, Ulman A, Prozorov T, White H, King A et al (1999) Self-assembled monolayers of alkanesulfonic and -phosphonic acids on amorphous iron oxide nanoparticles. Langmuir 15:7111–7115

    Article  CAS  Google Scholar 

  104. Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN et al (2001) Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17:7907–7911

    Article  CAS  Google Scholar 

  105. Basuki JS, Jacquemin A, Esser L, Li Y, Boyer C, Davis TP (2014) A block copolymer-stabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents. Polym Chem 5:2611–2620

    Article  CAS  Google Scholar 

  106. Lu X, Niu M, Qiao R, Gao M (2008) Superdispersible PVP-coated Fe3O4 Nanocrystals prepared by a “One-Pot” reaction. J Phys Chem B 112:14390–14394

    Article  CAS  Google Scholar 

  107. Lee H-Y, Lee S-H, Xu C, Xie J, Lee J-H, Wu B et al (2008) Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent. Nanotechnology 19:165101–165106

    Article  CAS  Google Scholar 

  108. Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  CAS  Google Scholar 

  109. Park J, Lee E, Hwang N-M, Kang M, Kim SC, Hwang Y et al (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic Iron oxide nanoparticles. Angew Chem Int Ed 44:2872–2877

    Article  CAS  Google Scholar 

  110. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and Monodisperse Maghemite Nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801

    Article  CAS  Google Scholar 

  111. Kim BH, Lee N, Kim H, An K, Park YI, Choi Y et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631

    Article  CAS  Google Scholar 

  112. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    Article  CAS  Google Scholar 

  113. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  Google Scholar 

  114. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX et al (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279

    Article  CAS  Google Scholar 

  115. Dong A, Ye X, Chen J, Kang Y, Gordon T, Kikkawa JM et al (2011) A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J Am Chem Soc 133:998–1006

    Article  CAS  Google Scholar 

  116. Zhang T, Ge J, Hu Y, Yin Y (2007) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 7:3203–3207

    Article  CAS  Google Scholar 

  117. El-Dakdouki MH, El-Boubbou K, Zhu DC, Huang X (2011) A simple method for the synthesis of hyaluronic acid coated magnetic nanoparticles for highly efficient cell labelling and in vivo imaging. RSC Adv 1:1449–1452

    Article  CAS  Google Scholar 

  118. De Palma R, Peeters S, Van Bael MJ, Van den Rul H, Bonroy K, Laureyn W et al (2007) Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem Mater 19:1821–1831

    Article  CAS  Google Scholar 

  119. Kwon SG, Hyeon T (2011) Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7:2685–2702

    Article  CAS  Google Scholar 

  120. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660

    Article  CAS  Google Scholar 

  121. Cheon J, Kang N-J, Lee S-M, Lee J-H, Yoon J-H, Oh SJ (2004) Shape evolution of single-crystalline iron oxide nanocrystals. J Am Chem Soc 126:1950–1951

    Article  CAS  Google Scholar 

  122. Jana NR, Chen Y, Peng X (2004) Size- and shape-controlled magnetic (Cr, Mn, Fe, co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16:3931–3935

    Article  CAS  Google Scholar 

  123. Lee Y, Lee J, Bae CJ, Park J-G, Noh H-J, Park J-H et al (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509

    Article  CAS  Google Scholar 

  124. Li Z, Chen H, Bao H, Gao M (2004) One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater 16:1391–1393

    Article  CAS  Google Scholar 

  125. Li Z, Sun Q, Gao M (2005) Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4. Angew Chem Int Ed 44:123–126

    Article  CAS  Google Scholar 

  126. Ge J, Hu Y, Biasini M, Beyermann WP, Yin Y (2007) Superparamagnetic magnetite colloidal nanocrystal clusters. Angew Chem Int Ed 46:4342–4345

    Article  CAS  Google Scholar 

  127. Ge J, Hu Y, Biasini M, Dong C, Guo J, Beyermann WP et al (2007) One-step synthesis of highly water-soluble magnetite colloidal nanocrystals. Chem Eur J 13:7153–7161

    Article  CAS  Google Scholar 

  128. El-Boubbou K, Al-Kaysi RO, Al-Muhanna MK, Bahhari HM, Al-Romaeh AI, Darwish N et al (2015) Ultra-small fatty acid-stabilized magnetite nanocolloids synthesized by in situ hydrolytic precipitation. J Nanomater 2015:620672. 11 pages

    Article  CAS  Google Scholar 

  129. El-Boubbou K (2017) Usacid-stabilized iron-based metal oxide colloidal nanoparticles, and methods thereof. US Patent 20170110228 A1

    Google Scholar 

  130. Jaffer Farouc A, Nahrendorf M, Sosnovik D, Kelly Kimberly A, Aikawa E, Weissleder R (2006) Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 5:85–92

    CAS  Google Scholar 

  131. Thorek Daniel LJ, Chen Antony K, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38

    Article  CAS  Google Scholar 

  132. Oksendal AN, Bach-Gansmo T, Jacobsen TF, Eide H, Andrew E (1993) Oral magnetic particles: results from clinical phase II trials in 216 patients. Acta Radiol 34:187–193

    Article  CAS  Google Scholar 

  133. Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13:1266

    Google Scholar 

  134. Michel SCA, Keller TM, Fröhlich JM, Fink D, Caduff R, Seifert B et al (2002) Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement. Radiology 225:527–536

    Article  Google Scholar 

  135. Trivedi RA, Mallawarachi C, U-King-Im J-M, Graves MJ, Horsley J, Goddard MJ et al (2006) Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 26:1601

    Article  CAS  Google Scholar 

  136. Bachmann R, Conrad R, Kreft B, Luzar O, Block W, Flacke S et al (2002) Evaluation of a new ultrasmall superparamagnetic iron oxide contrast agent Clariscan®, (NC100150) for MRI of renal perfusion: experimental study in an animal model. J Magn Reson Imaging 16:190–195

    Article  Google Scholar 

  137. Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674

    Article  CAS  Google Scholar 

  138. Jung CW (1995) Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:675–691

    Article  CAS  Google Scholar 

  139. Wang Y-XJ (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1:35–40

    Google Scholar 

  140. Thill M, Kurylcio A, Welter R, van Haasteren V, Grosse B, Berclaz G et al (2014) The central-European SentiMag study: sentinel lymph node biopsy with superparamagnetic iron oxide (SPIO) vs. radioisotope. Breast 23:175–179

    Article  Google Scholar 

  141. Winter A, Woenkhaus J, Wawroschek F (2014) A novel method for intraoperative sentinel lymph node detection in prostate cancer patients using superparamagnetic iron oxide nanoparticles and a handheld magnetometer: the initial clinical experience. Ann Surg Oncol 21:4390–4396

    Article  Google Scholar 

  142. Wáng YXJ, Idée J-M (2017) A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg 7:88–122

    Article  Google Scholar 

  143. Lee J-H, Huh Y-M, Jun Y-w, Seo J-w, Jang J-t, Song H-T et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99

    Article  CAS  Google Scholar 

  144. Kim J, Piao Y, Hyeon T (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38:372–390

    Article  CAS  Google Scholar 

  145. Jarzyna PA, Gianella A, Skajaa T, Knudsen G, Deddens LH, Cormode DP et al (2010) Multifunctional imaging nanoprobes. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:138–150

    Article  CAS  Google Scholar 

  146. Lewin M, Carlesso N, Tung C-H, Tang X-W, Cory D, Scadden DT et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  CAS  Google Scholar 

  147. Lee H-Y, Li Z, Chen K, Hsu AR, Xu C, Xie J et al (2008) PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)–conjugated radiolabeled Iron oxide nanoparticles. J Nucl Med 49:1371

    Article  CAS  Google Scholar 

  148. Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R (2002) Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug Chem 13:554–560

    Article  CAS  Google Scholar 

  149. Pittet MJ, Swirski FK, Reynolds F, Josephson L, Weissleder R (2006) Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protoc 1:73–79

    Article  CAS  Google Scholar 

  150. Moore A, Medarova Z, Potthast A, Dai G (2004) In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res 64:1821–1827

    Article  CAS  Google Scholar 

  151. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E et al (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–387

    Article  CAS  Google Scholar 

  152. Nahrendorf M, Keliher E, Marinelli B, Waterman P, Feruglio PF, Fexon L et al (2010) Hybrid PET-optical imaging using targeted probes. Proc Natl Acad Sci USA 107:7910–7915

    Article  Google Scholar 

  153. Kirschbaum K, Sonner JK, Zeller MW, Deumelandt K, Bode J, Sharma R et al (2016) In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Natl Acad Sci USA 113:13227–13232

    Article  CAS  Google Scholar 

  154. Raymond KN, Pierre VC (2005) Next generation, high Relaxivity gadolinium MRI agents. Bioconjug Chem 16:3–8

    Article  CAS  Google Scholar 

  155. Datta A, Raymond KN (2009) Gd-hydroxypyridinone (HOPO)-based high-relaxivity magnetic resonance imaging (MRI) contrast agents. Acc Chem Res 42:938–947

    Article  CAS  Google Scholar 

  156. Yang H, Zhuang Y, Sun Y, Dai A, Shi X, Wu D et al (2011) Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 32:4584–4593

    Article  CAS  Google Scholar 

  157. Bae KH, Kim YB, Lee Y, Hwang J, Park H, Park TG (2010) Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T1- and T2-weighted magnetic resonance imaging. Bioconjug Chem 21:505–512

    Article  CAS  Google Scholar 

  158. Amstad E, Gillich T, Bilecka I, Textor M, Reimhult E (2009) Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett 9:4042–4048

    Article  CAS  Google Scholar 

  159. Shen J, Li Y, Zhu Y, Yang X, Yao X, Li J et al (2015) Multifunctional gadolinium-labeled silica-coated Fe3O4 and CuInS2 nanoparticles as a platform for in vivo tri-modality magnetic resonance and fluorescence imaging. J Mater Chem B 3:2873–2882

    Article  CAS  Google Scholar 

  160. Savolainen H, Volpe A, Phinikaridou A, Douek M, Fruhwirth GO, de Rosales RTM (2018) [68Ga]Ga-sienna+ PET-MRI as a preoperative imaging tool for sentinel lymph node biopsy: synthesis and preclinical evaluation in a metastatic breast Cancer model. In: 13th European molecular imaging meeting – EMIM

    Google Scholar 

  161. Jin Y, Jia C, Huang S-W, O’Donnell M, Gao X (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:41

    Article  CAS  Google Scholar 

  162. Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24:62–67

    Article  CAS  Google Scholar 

  163. Hoskins C, Min Y, Gueorguieva M, McDougall C, Volovick A, Prentice P et al (2012) Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application. J Nanobiotechnol 10:27

    Article  CAS  Google Scholar 

  164. Thomas R, Park I-K, Jeong YY (2013) Magnetic Iron oxide nanoparticles for multimodal imaging and therapy of Cancer. Int J Mol Sci 14:15910–15930

    Article  CAS  Google Scholar 

  165. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294

    Article  CAS  Google Scholar 

  166. Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J (2015) Iron oxide based nanoparticles for multimodal imaging and Magnetoresponsive therapy. Chem Rev 115:10637–10689

    Article  CAS  Google Scholar 

  167. Reguera J, Jimenez de Aberasturi D, Henriksen-Lacey M, Langer J, Espinosa A, Szczupak B et al (2017) Janus plasmonic-magnetic gold-iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale 9:9467–9480

    Article  CAS  Google Scholar 

  168. Mahmoudi M, Shokrgozar MA (2012) Multifunctional stable fluorescent magnetic nanoparticles. Chem Commun 48:3957–3959

    Article  CAS  Google Scholar 

  169. Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem 6:143–162

    Article  CAS  Google Scholar 

  170. Chen O, Riedemann L, Etoc F, Herrmann H, Coppey M, Barch M et al (2014) Magneto-fluorescent core-shell supernanoparticles. Nat Commun 5:5093

    Article  CAS  Google Scholar 

  171. Lee EA, Yim H, Heo J, Kim H, Jung G, Hwang NS (2014) Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch Pharm Res 37:120–128

    Article  CAS  Google Scholar 

  172. Corchero JL, Villaverde A (2009) Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol 27:468–476

    Article  CAS  Google Scholar 

  173. Sensenig R, Sapir Y, MacDonald C, Cohen S, Polyak B (2012) Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine (Lond) 7:1425–1442

    Article  CAS  Google Scholar 

  174. Santos LJ, Reis RL, Gomes ME (2015) Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends Biotechnol 33:471–479

    Article  CAS  Google Scholar 

  175. Betal S, Saha AK, Ortega E, Dutta M, Ramasubramanian AK, Bhalla AS et al (2018) Core-shell magnetoelectric nanorobot – a remotely controlled probe for targeted cell manipulation. Sci Rep 8:1755

    Article  CAS  Google Scholar 

  176. Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29:183–190

    Article  CAS  Google Scholar 

  177. Perea H, Aigner J, Heverhagen JT, Hopfner U, Wintermantel E (2007) Vascular tissue engineering with magnetic nanoparticles: seeing deeper. J Tissue Eng Regen Med 1:318–321

    Article  CAS  Google Scholar 

  178. Yamamoto Y, Ito A, Kato M, Kawabe Y, Shimizu K, Fujita H et al (2009) Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique. J Biosci Bioeng 108:538–543

    Article  CAS  Google Scholar 

  179. Shimizu K, Ito A, Yoshida T, Yamada Y, Ueda M, Honda H (2007) Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force. J Biomed Mater Res B Appl Biomater 82B:471–480

    Article  CAS  Google Scholar 

  180. Sasaki T, Iwasaki N, Kohno K, Kishimoto M, Majima T, Nishimura S-I et al (2007) Magnetic nanoparticles for improving cell invasion in tissue engineering. J Biomed Mater Res A 86A:969–978

    Article  CAS  Google Scholar 

  181. Thevenot P, Sohaebuddin S, Poudyal N, Liu JP, Tang L (2008) Magnetic nanoparticles to enhance cell seeding and distribution in tissue engineering scaffolds. Proc IEEE Conf Nanotechnol 2008:646–649

    Google Scholar 

  182. Shimizu K, Ito A, Honda H (2006) Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles. J Biomed Mater Res B Appl Biomater 77B:265–272

    Article  CAS  Google Scholar 

  183. Ishii M, Shibata R, Numaguchi Y, Kito T, Suzuki H, Shimizu K et al (2011) Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. Arterioscler Thromb Vasc Biol 31:2210–2215

    Article  CAS  Google Scholar 

  184. Ishii M, Shibata R, Shimizu Y, Yamamoto T, Kondo K, Inoue Y et al (2014) Multilayered adipose-derived regenerative cell sheets created by a novel magnetite tissue engineering method for myocardial infarction. Int J Cardiol 175:545–553

    Article  Google Scholar 

  185. Kito T, Shibata R, Ishii M, Suzuki H, Himeno T, Kataoka Y et al (2013) iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis. Sci Rep 3:1418

    Article  CAS  Google Scholar 

  186. Meng J, Xiao B, Zhang Y, Liu J, Xue H, Lei J et al (2013) Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Rep 3:2655

    Article  Google Scholar 

  187. Sapir Y, Cohen S, Friedman G, Polyak B (2012) The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials 33:4100–4109

    Article  CAS  Google Scholar 

  188. Singh RK, Patel KD, Lee JH, Lee E-J, Kim J-H, Kim T-H et al (2014) Potential of magnetic Nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration. PLoS One 9:e91584

    Article  CAS  Google Scholar 

  189. Cezar CA, Kennedy SM, Mehta M, Weaver JC, Gu L, Vandenburgh H et al (2014) Biphasic ferrogels for triggered drug and cell delivery. Adv Healthc Mater 3:1869–1876

    Article  CAS  Google Scholar 

  190. Ziv-Polat O, Skaat H, Shahar A, Margel S (2012) Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. Int J Nanomedicine 7:1259–1274

    Article  CAS  Google Scholar 

  191. Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–341

    Article  Google Scholar 

  192. Eckmann DM, Composto RJ, Tsourkas A, Muzykantov VR (2014) Nanogel carrier design for targeted drug delivery. J Mater Chem B Mater Biol Med 2:8085–8097

    Article  CAS  Google Scholar 

  193. Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41:1842–1851

    Article  CAS  Google Scholar 

  194. Park J-H, von Maltzahn G, Xu MJ, Fogal V, Kotamraju VR, Ruoslahti E et al (2010) Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc Natl Acad Sci USA 107:981–986

    Article  CAS  Google Scholar 

  195. Bullivant JP, Zhao S, Willenberg BJ, Kozissnik B, Batich CD, Dobson J (2013) Materials characterization of feraheme/ferumoxytol and preliminary evaluation of its potential for magnetic fluid hyperthermia. Int J Mol Sci 14:17501–17510

    Article  CAS  Google Scholar 

  196. Balakrishnan VS, Rao M, Kausz AT, Brenner L, Pereira BJG, Frigo TB et al (2009) Physicochemical properties of ferumoxytol, a new intravenous iron preparation. Eur J Clin Investig 39:489–496

    Article  CAS  Google Scholar 

  197. Helenek MJ, Tokars ML, Lawrence RP (2006) Methods and compositions for administration of iron. US Patent, 7754702B2

    Google Scholar 

  198. Pai AB, Garba AO (2012) Ferumoxytol: a silver lining in the treatment of anemia of chronic kidney disease or another dark cloud? J Blood Med 3:77–85

    Google Scholar 

  199. Bashir MR, Bhatti L, Marin D, Nelson RC (2015) Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 41:884–898

    Article  Google Scholar 

  200. ClinicalTrialsgov (2016) Using ferumoxytol-enhanced MRI to measure inflammation in patients with brain tumors or other conditions of the CNS. clinicaltrials.gov/ct2/show/NCT02452216

  201. ClinicalTrialsgov (2015) Ferumoxytol enhanced MRI for the detection of lymph node involvement in prostate cancer. clinicaltrials.gov/ct2/show/NCT01296139

  202. ClinicalTrialsgov (2014) Magnetic nanoparticle thermoablation-retention and maintenance in the prostate: a phase 0 study in men (MAGNABLATE I). clinicaltrials.gov/ct2/show/NCT02033447

  203. Moore A, Weissleder R, Bogdanov A Jr (1997) Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 7:1140–1145

    Article  CAS  Google Scholar 

  204. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600

    Article  CAS  Google Scholar 

  205. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51

    Article  CAS  Google Scholar 

  206. Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 83:601–606

    Article  CAS  Google Scholar 

  207. Peng XH, Qian X, Mao H, Wang AY, Chen Z, Nie S et al (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 3:311–321

    CAS  Google Scholar 

  208. Park K (2013) Facing the truth about nanotechnology in drug delivery. ACS Nano 7:7442–7447

    Article  CAS  Google Scholar 

  209. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205

    Article  CAS  Google Scholar 

  210. Leamon CP, Cooper SR, Hardee GE (2003) Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug Chem 14:738–747

    Article  CAS  Google Scholar 

  211. Peng M, Li H, Luo Z, Kong J, Wan Y, Zheng L et al (2015) Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. Nanoscale 7:11155–11162

    Article  CAS  Google Scholar 

  212. Kaittanis C, Shaffer TM, Ogirala A, Santra S, Perez JM, Chiosis G et al (2014) Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat Commun 5:3384

    Article  CAS  Google Scholar 

  213. Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169

    Article  CAS  Google Scholar 

  214. Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery in nanotechnology and nanomaterials. In: Sezer AD (ed) Application of nanotechnology in drug delivery, IntechOpen, London. https://doi.org/10.5772/58422

    Google Scholar 

  215. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  Google Scholar 

  216. Cheng R, Meng F, Deng C, Klok H-A, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657

    Article  CAS  Google Scholar 

  217. El-Boubbou K, Ali R, Bahhari HM, AlSaad KO, Nehdi A, Boudjelal M et al (2016) Magnetic fluorescent Nanoformulation for intracellular drug delivery to human breast cancer, primary tumors, and tumor biopsies: beyond targeting expectations. Bioconjug Chem 27:1471–1483

    Article  CAS  Google Scholar 

  218. El-Boubbou K, Azar D, Bekdash A, Abi-Habib RJ (2017) Doxironide magnetic nanoparticles for selective drug delivery to human acute myeloid leukemia. J Biomed Nanotechnol 13:500–512

    Article  CAS  Google Scholar 

  219. El-Boubbou K, Ali R, Bahhari HM, Boudjelal M (2017) Magnetic nanocarriers enhance drug delivery selectively to human leukemic cells. J Nanomed Nanotechnol 8(441):1–7

    Google Scholar 

  220. Gautier J, Allard-Vannier E, Burlaud-Gaillard J, Domenech J, Chourpa I (2015) Efficacy and hemotoxicity of stealth doxorubicin-loaded magnetic nanovectors on breast cancer xenografts. J Biomed Nanotechnol 11:177–189

    Article  CAS  Google Scholar 

  221. Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie-Staunton K et al (2015) Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res 17:66

    Article  CAS  Google Scholar 

  222. Mejías R, Pérez-Yagüe S, Gutiérrez L, Cabrera LI, Spada R, Acedo P et al (2011) Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials 32:2938–2952

    Article  CAS  Google Scholar 

  223. Wang D, Fei B, Halig LV, Qin X, Hu Z, Xu H et al (2014) Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS Nano 8:6620–6632

    Article  CAS  Google Scholar 

  224. Tietze R, Lyer S, Dürr S, Struffert T, Engelhorn T, Schwarz M et al (2013) Efficient drug-delivery using magnetic nanoparticles – biodistribution and therapeutic effects in tumour bearing rabbits. Nanomedicine 9:961–971

    Article  CAS  Google Scholar 

  225. Hu S-H, Liao B-J, Chiang C-S, Chen P-J, Chen IW, Chen S-Y (2012) Core-shell nanocapsules stabilized by single-component polymer and nanoparticles for magneto-chemotherapy/hyperthermia with multiple drugs. Adv Mater 24:3627–3632

    Article  CAS  Google Scholar 

  226. Kim D-H, Guo Y, Zhang Z, Procissi D, Nicolai J, Omary RA et al (2014) Temperature sensitive magnetic drug carriers for concurrent gemcitabine chemohyperthermia. Adv Healthc Mater 3:714–724

    Article  CAS  Google Scholar 

  227. Kong SD, Zhang W, Lee JH, Brammer K, Lal R, Karin M et al (2010) Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release. Nano Lett 10:5088–5092

    Article  CAS  Google Scholar 

  228. Yang J, Lee C-H, Ko H-J, Suh J-S, Yoon H-G, Lee K et al (2007) Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed 46:8836–8839

    Article  CAS  Google Scholar 

  229. Lim E-K, Huh Y-M, Yang J, Lee K, Suh J-S, Haam S (2011) pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater 23:2436–2442

    Article  CAS  Google Scholar 

  230. Ketkar-Atre A, Struys T, Dresselaers T, Hodenius M, Mannaerts I, Ni Y et al (2014) In vivo hepatocyte MR imaging using lactose functionalized magnetoliposomes. Biomaterials 35:1015–1024

    Article  CAS  Google Scholar 

  231. Bulte JWM, Douglas T, Witwer B, Zhang S-C, Strable E, Lewis BK et al (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    Article  CAS  Google Scholar 

  232. Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H, Ghobril C, Basly B, Bertin A et al (2011) Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials 32:8562–8573

    Article  CAS  Google Scholar 

  233. Monnier CA, Burnand D, Rothen-Rutishauser B, Lattuada M, Petri-Fink A (2014) Magnetoliposomes: opportunities and challenges. Eur J Nanomed 6:201–2015

    Article  CAS  Google Scholar 

  234. Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M (2014) Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv 11:1449–1470

    Article  CAS  Google Scholar 

  235. Kohler N, Sun C, Wang J, Zhang M (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21:8858–8864

    Article  CAS  Google Scholar 

  236. Sun C, Fang C, Stephen Z, Veiseh O, Hansen S, Lee D et al (2008) Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine (Lond) 3:495–505

    Article  CAS  Google Scholar 

  237. Yang H-W, Hua M-Y, Liu H-L, Tsai R-Y, Chuang C-K, Chu P-C et al (2012) Cooperative dual-activity targeted nanomedicine for specific and effective prostate cancer therapy. ACS Nano 6:1795–1805

    Article  CAS  Google Scholar 

  238. Tong R, Tang L, Ma L, Tu C, Baumgartner R, Cheng J (2014) Smart chemistry in polymeric nanomedicine. Chem Soc Rev 43:6982–7012

    Article  CAS  Google Scholar 

  239. Wang H-C, Zhang Y, Possanza CM, Zimmerman SC, Cheng J, Moore JS et al (2015) Trigger chemistries for better industrial formulations. ACS Appl Mater Interfaces 7:6369–6382

    Article  CAS  Google Scholar 

  240. Yu J, Chu X, Hou Y (2014) Stimuli-responsive cancer therapy based on nanoparticles. Chem Commun 50:11614–11630

    Article  CAS  Google Scholar 

  241. El-Dakdouki MH, Zhu DC, El-Boubbou K, Kamat M, Chen J, Li W et al (2012) Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules 13:1144–1151

    Article  CAS  Google Scholar 

  242. Ding X, Liu Y, Li J, Luo Z, Hu Y, Zhang B et al (2014) Hydrazone-bearing PMMA-functionalized magnetic Nanocubes as pH-responsive drug carriers for remotely targeted Cancer therapy in vitro and in vivo. ACS Appl Mater Interfaces 6:7395–7407

    Article  CAS  Google Scholar 

  243. Banerjee SS, Chen D-H (2008) Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery. Nanotechnology 19:505104

    Article  Google Scholar 

  244. Zhu L, Wang D, Wei X, Zhu X, Li J, Tu C et al (2013) Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J Control Release 169:228–238

    Article  CAS  Google Scholar 

  245. Wang Y, Jia H-Z, Han K, Zhuo R-X, Zhang X-Z (2013) Theranostic magnetic nanoparticles for efficient capture and in situ chemotherapy of circulating tumor cells. J Mater Chem B 1:3344–3352

    Article  CAS  Google Scholar 

  246. Ansari C, Tikhomirov GA, Hong SH, Falconer RA, Loadman PM, Gill JH et al (2014) Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small 10:566–417

    Article  CAS  Google Scholar 

  247. Stephen ZR, Kievit FM, Veiseh O, Chiarelli PA, Fang C, Wang K et al (2014) Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors. ACS Nano 8:10383–10395

    Article  CAS  Google Scholar 

  248. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377

    Article  CAS  Google Scholar 

  249. Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N (2010) Orally delivered thioketal-nanoparticles loaded with TNFα-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 9:923–928

    Article  CAS  Google Scholar 

  250. Lee J-H, Lee K, Moon SH, Lee Y, Park TG, Cheon J (2009) All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed 48:4174–4179

    Article  CAS  Google Scholar 

  251. Juratli TA, Schackert G, Krex D (2013) Current status of local therapy in malignant gliomas – a clinical review of three selected approaches. Pharmacol Ther 139:341–358

    Article  CAS  Google Scholar 

  252. Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T et al (2014) Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 4:834–844

    Article  CAS  Google Scholar 

  253. Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13:655–672

    Article  CAS  Google Scholar 

  254. Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV et al (2015) Accelerating the translation of nanomaterials in biomedicine. ACS Nano 9:6644–6654

    Article  CAS  Google Scholar 

  255. Jin-Wook Y, Elizabeth C, Samir M (2010) Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des 16:2298–2307

    Article  Google Scholar 

  256. Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A (2016) Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomedicine 12:81–103

    Article  CAS  Google Scholar 

  257. Pillai G (2014) Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. Pharm Pharm Sci 1:13

    Google Scholar 

  258. Sievers EL, Senter PD (2013) Antibody-drug conjugates in cancer therapy. Annu Rev Med 64:15–29

    Article  CAS  Google Scholar 

  259. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41:2971–3010

    Article  CAS  Google Scholar 

  260. Wickham T, Futch K (2012) A phase I study of MM-302, a HER2-targeted liposomal doxorubicin, in patients with advanced, HER2-positive breast cancer. Cancer Res 72(Suppl. 24):P5-18-09

    Google Scholar 

  261. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367:1783–1791

    Article  CAS  Google Scholar 

  262. Singha N, Jenkinsa GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358

    Article  CAS  Google Scholar 

  263. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338

    Article  CAS  Google Scholar 

  264. AMAG Pharmaceuticals Inc (2010) Feraheme™ (ferumoxytol) injection prescribing information

    Google Scholar 

  265. Monnier Christophe A, Burnand D, Rothen-Rutishauser B, Lattuada M, Petri-Fink A (2014) Magnetoliposomes: opportunities and challenges. Eur J Nanomed 6:201

    Google Scholar 

  266. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  Google Scholar 

  267. Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V et al (2017) Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials 7:243

    Article  CAS  Google Scholar 

  268. Mahmoudi M, Serpooshan V, Laurent S (2011) Engineered nanoparticles for biomolecular imaging. Nanoscale 3:3007–3026

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author would like to thank the continuous support by KSAU-HS, KAIMRC, and Ministry of National Guard Health Affairs. This work was funded by KAIMRC under grant RC13/204/R.

Financial and Competing Interests

The author declares no competing financial interests. No writing assistance was utilized in the production of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kheireddine El-Boubbou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Boubbou, K. (2019). Magneto-Responsive Nanomaterials for Medical Therapy in Preclinical and Clinical Settings. In: Kumar, C. (eds) Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59596-1_6

Download citation

Publish with us

Policies and ethics