Skip to main content

Thermal Management Techniques for Concentrating Photovoltaic Modules

  • Chapter
  • First Online:
  • 813 Accesses

Abstract

Concentrating photovoltaic technology is one of the most promising solar energy utilization technologies which can directly transform sunlight into electricity with high conversion efficiency up to 46%. Nevertheless, the concentrator brings a large amount of heat to the solar cell and temperature of the solar cell significantly affects its performance by reducing the efficiency and lifespan. Therefore, it is necessary to use proper cooling technology to dissipate the excess heat and maintain the solar cell temperature in an acceptable range. This work presents an overview of various cooling technologies available for concentrating photovoltaic systems in terms of passive and active methods. In passive cooling, natural convection heat sink cooling, heat pipe cooling, and phase change material cooling have been summarized. Inactive cooling, jet impingement cooling, liquid immersion cooling, and microchannel heat sink cooling have been evaluated. At last, discussions of these cooling techniques were reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Micheli, N. Sarmah, X. Luo, K.S. Reddy, T.K. Mallick, Opportunities and challenges in micro-and nano-technologies for concentrating photovoltaic cooling: a review. Renew. Sust. Energ. Rev. 20, 595–610 (2013)

    Article  Google Scholar 

  2. S. Jakhar, M.S. Soni, N. Gakkhar, Historical and recent development of concentrating photovoltaic cooling technologies. Renew. Sust. Energ. Rev. 60, 41–59 (2016)

    Article  Google Scholar 

  3. K. Lovegrove, W. Stein, Concentrating Solar Power Technology: Principles, Developments, and Applications Woodhead Publishing Limited, Cambridge, UK (2012)

    Google Scholar 

  4. M. Soni, M. Padmini, Concentrating solar photovoltaic, in IVth International Conference on Advances in Energy Research Mumbai, India (2013)

    Google Scholar 

  5. I.S.E. Fraunhofer, The new world record for solar cell efficiency at 46% (2014). Press release, Fraunhofer ISE, December 1. Available at https://www.ise.fraun-hofer.de/en/press-media/pressreleases/2014/new-world-record-for-solar-cell-efficiency-at-46-percent.html. 14 Sept 2017

  6. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, et al., Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25, 565–572 (2010)

    Google Scholar 

  7. P. Pérez-Higueras, E. Muñoz, G. Almonacid, P.G. Vidal, High concentrator photovoltaics efficiencies: Present status and forecast. Renew. Sustain. Energy Rev. 15(4), 1810–1815 (2011)

    Article  Google Scholar 

  8. A. Royne, C.J. Dey, D.R. Mills, Cooling of photovoltaic cells under concentrated illumination: a critical review. Sol. Energy Mater. Sol. Cells 86(4), 451–483 (2005)

    Article  CAS  Google Scholar 

  9. Z. Ye, Q. Li, Q. Zhu, W. Pan, The cooling technology of solar cells under a concentrated system, in Proceedings of the IEEE 6th International Power Electro and Motion Control Conference, IPEMC’09, 3 Wuhan, China (2009), pp. 2193–2197

    Google Scholar 

  10. E. Skoplaki, J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energy 83(5), 614–624 (2009)

    Article  CAS  Google Scholar 

  11. A. Aldossary, S. Mahmoud, R. Al-Dadah, Technical feasibility study of passive and active cooling for concentrator PV in a harsh environment. Appl. Therm. Eng. 100, 490–500 (2016)

    Article  Google Scholar 

  12. K. Nashik, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, T. Fuyuki, Annual output estimation of concentrator photovoltaic systems using high-efficiency gap/in GaAs/Ge triple-junction solar cells based on experimental solar cell's characteristics and field-test meteorological data. Sol. Energy Mater. Sol. Cells 90(1), 57–67 (2006)

    Article  Google Scholar 

  13. K. Araki, H. Uozumi, M. Yamaguchi, A simple passive cooling structure and its heat analysis for 500× concentrator PV module, in Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, New Orleans, Los Angeles, USA, vol. 18 (IEEE, 2002), pp.1568–1571

    Google Scholar 

  14. T. L. Chou, Z. H. Shih, H. F. Hong, C. N. Han, Investigation of the thermal performance of high-concentration photovoltaic solar cell package, in International Conference on Electronic Materials and Packaging Daejeon, South Korea (IEEE, 2007), pp. 1–6

    Google Scholar 

  15. F. Gualdi, O. Arenas, A. Vossier, A. Dollet, V. Aimez, R. Arès, Determining passive cooling limits in CPV using an analytical thermal model, 9th International Conference on Concentrator Photovoltaic Systems, Miyazaki, Japan, AIP Conference Proceeding. 1556(48), 10–13 (2013)

    Google Scholar 

  16. M. Cui, N.F. Chen, X.L. Yang, Y. Wang, Y.N. Bai, X.W. Zhang, Thermal analysis and test for single concentrator solar cells. J. Semicond. 30(4), 63–66 (2009)

    Google Scholar 

  17. S.K. Natarajan, T.K. Mallick, M. Katz, S. Weingaertner, Numerical investigations of solar cell temperature for photovoltaic concentrator system with and without passive cooling arrangements. Int. J. Therm. Sci. 50(12), 2514–2521 (2011)

    Article  Google Scholar 

  18. L. Micheli, E.F. Fernandez, F. Almonacid, K.S. Reddy, T.K. Mallick, Enhancing Ultra-High CPV Passive Cooling Using Least-Material Finned Heat Sinks, American Institute of Physics Conference Series, vol 1679 (AIP Publishing LLC, 2015), pp. 1810–001575

    Google Scholar 

  19. L. Micheli, E. F. Fernández, F. Almonacid, K. S. Reddy, T. K. Mallick, Optimization of the least-material approach for passive Ultra-High CPV cooling, in Photovoltaic Specialist Conference, New Orleans, Los Angeles, USA (IEEE, 2015), pp. 1–6

    Google Scholar 

  20. L. Micheli, S. Senthilarasu, K.S. Reddy, T.K. Mallick, Applicability of silicon micro-finned heat sinks for 500× concentrating photovoltaic systems. J. Mater. Sci. 50(16), 5378–5388 (2015)

    Article  CAS  Google Scholar 

  21. K.H. Do, T.H. Kim, Y.S. Han, B.I. Choi, M.B. Kim, A general correlation of a natural convective heat sink with plate-fins for high concentrating photovoltaic module cooling. Sol. Energy 86(9), 2725–2734 (2012)

    Article  Google Scholar 

  22. A. Bar-Cohen, M. Iyengar, A.D. Kraus, Design of optimum plate-fin natural convective heat sinks. J. Electron. Packag. 125(2), 208–216 (2003)

    Article  CAS  Google Scholar 

  23. A. Dayan, R. Kushnir, G. Mittelman, A. Ullmann, Laminar free convection underneath a downward facing hot fin array. Int. J. Heat Mass Transfer 47(12), 2849–2860 (2004)

    Article  Google Scholar 

  24. Z. Zou, H. Gong, J. Wang, S. Xie, Numerical investigation of solar enhanced passive air cooling system for concentration photovoltaic module heat dissipation. J. Clean Energy Technol. 5(3)206–211 (2017)

    Google Scholar 

  25. G. F. Russell, U.S. Patent No. 4,320,246, 1982. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  26. A. Akbarzadeh, T. Wadowski, Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation. Appl. Therm. Eng. 16(1), 81–87 (1996)

    Article  CAS  Google Scholar 

  27. A. Cheknane, B. Benyoucef, A. Chaker, Performance of concentrator solar cells with passive cooling. Semicond. Sci. Technol. 21(2), 144 (2006)

    Article  CAS  Google Scholar 

  28. W. G. Anderson, P. M. Dussinger, D. B. Sarraf, S. Tamanna, Heat pipe cooling of concentrating photovoltaic cells, in Photovoltaic Specialists Conference, 2008. PVSC’08. 33rd IEEE (IEEE¸ 2008, May), San Diego, California, USA, pp. 1–6

    Google Scholar 

  29. H.J. Huang, S.C. Shen, H.J. Shaw, Design and fabrication of a novel hybrid-structure heat pipe for a concentrator photovoltaic. Energies 5(11), 4340–4349 (2012)

    Article  CAS  Google Scholar 

  30. S. Wang, J. Shi, H. H. Chen, S. R. Schafer, M. Munir, G. Stecker, …, C. L. Chen, Cooling design and evaluation for photovoltaic cells within constrained space in a CPV/CSP hybrid solar system. Appl. Therm. Eng. 110, 369–381 (2017)

    Google Scholar 

  31. M.C. Browne, B. Norton, S.J. McCormack, Phase change materials for photovoltaic thermal management. Renew. Sust. Energ. Rev. 47, 762–782 (2015)

    Article  CAS  Google Scholar 

  32. T. Ma, H. Yang, Y. Zhang, L. Lu, X. Wang, Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: a review and outlook. Renew. Sust. Energ. Rev. 43, 1273–1284 (2015)

    Article  Google Scholar 

  33. M.M. Islam, A.K. Pandey, M. Hasanuzzaman, N.A. Rahim, Recent signs of progress and achievements in photovoltaic-phase change material technology: a review with special treatment on photovoltaic thermal-phase change material systems. Energy Convers. Manag. 126, 177–204 (2016)

    Article  CAS  Google Scholar 

  34. S.S. Chandel, T. Agarwal, Review of cooling techniques using phase change materials for enhancing the efficiency of photovoltaic power systems. Renew. Sust. Energ. Rev. 73, 1342–1351 (2017)

    Article  Google Scholar 

  35. S. Preet, Water and phase change material based photovoltaic thermal management systems: a review. Renew. Sust. Energ. Rev. 82, 791–807 (2018)

    Article  CAS  Google Scholar 

  36. S. Sharma, A. Tahir, K.S. Reddy, T.K. Mallick, Performance enhancement of a building-integrated concentrating photovoltaic system using phase change material. Sol. Energy Mater. Sol. Cells 149, 29–39 (2016)

    Article  CAS  Google Scholar 

  37. S. Sharma, L. Micheli, W. Chang, A.A. Tahir, K.S. Reddy, T.K. Mallick, Nano-enhanced phase change material for thermal management of BICPV. Appl. Energy 208, 719–733 (2017)

    Article  Google Scholar 

  38. M. Emam, S. Ookawara, M. Ahmed, Performance study and analysis of an inclined concentrated photovoltaic-phase change material system. Sol. Energy 150, 229–245 (2017)

    Article  Google Scholar 

  39. M. Emam, M. Ahmed, Cooling concentrator photovoltaic systems using various configurations of phase-change material heat sinks. Energy Convers. Manag. 158, 298–314 (2018)

    Article  Google Scholar 

  40. Y. Su, Y. Zhang, L. Shu, Experimental study of using phase change material cooling in a solar tracking concentrated photovoltaic-thermal system. Sol. Energy 159, 777–785 (2018)

    Article  Google Scholar 

  41. W. M. Rohsenow, Y. I. Cho, in Handbook of Heat Transfer, ed. by J. P. Hartnett, vol. 3 (McGraw-Hill, New York, 1998)

    Google Scholar 

  42. A. Royne, C.J. Dey, Design of a jet impingement cooling device for densely packed PV cells under high concentration. Sol. Energy 81(8), 1014–1024 (2007)

    Article  CAS  Google Scholar 

  43. D. Montorfano, A. Gaetano, M. C. Barbato, G. Ambrosetti, A. Pedretti, CPV cells cooling system based on submerged jet impingement: CFD modeling and experimental validation, in AIP Conference Proceedings, vol. 1616, No. 1 (AIP, 2014), Albuquerque, New Mexcico, USA, pp. 135–139

    Google Scholar 

  44. J. Barrau, J. Rosell, M. Ibañez, Design of a hybrid jet impingement/microchannel cooling device for densely packed PV cells under high concentration, in AIP Conference Proceedings, vol. 1277, No. 1 (AIP, 2010), Freiburg, Germany, pp. 74–77

    Google Scholar 

  45. J. Barrau, J. Rosell, D. Chemisana, L. Tadrist, M. Ibáñez, Effect of a hybrid jet impingement/micro-channel cooling device on the performance of densely packed PV cells under high concentration. Sol. Energy 85(11), 2655–2665 (2011)

    Article  Google Scholar 

  46. J. Barrau, A. Perona, A. Dollet, J. Rosell, Outdoor test of a hybrid jet impingement/micro-channel cooling device for densely packed concentrated photovoltaic cells. Sol. Energy 107, 113–121 (2014)

    Article  Google Scholar 

  47. X. Han, Y. Wang, L. Zhu, Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids. Appl. Energy 88(12), 4481–4489 (2011)

    Article  CAS  Google Scholar 

  48. L. Zhu, Y. Wang, Z. Fang, Y. Sun, Q. Huang, An effective heat dissipation method for densely packed solar cells under high concentrations. Sol. Energy Mater. Sol. Cells 94(2), 133–140 (2010)

    Article  CAS  Google Scholar 

  49. L. Liu, L. Zhu, Y. Wang, Q. Huang, Y. Sun, Z. Yin, Heat dissipation performance of silicon solar cells by direct dielectric liquid immersion under intensified illuminations. Sol. Energy 85(5), 922–930 (2011)

    Article  CAS  Google Scholar 

  50. L. Zhu, R.F. Boehm, Y. Wang, C. Halford, Y. Sun, Water immersion cooling of PV cells in a high concentration system. Sol. Energy Mater. Sol. Cells 95(2), 538–545 (2011)

    Article  CAS  Google Scholar 

  51. X. Han, Y. Wang, L. Zhu, H. Xiang, H. Zhang, Mechanism study of the electrical performance change of silicon concentrator solar cells immersed in de-ionized water. Energy Convers. Manag. 53(1), 1–10 (2012)

    Article  CAS  Google Scholar 

  52. H. Xiang, Y. Wang, L. Zhu, X. Han, Y. Sun, Z. Zhao, 3D numerical simulation on heat transfer performance of a cylindrical liquid immersion solar receiver. Energy Convers. Manag. 64, 97–105 (2012)

    Article  Google Scholar 

  53. Y. Sun, Y. Wang, L. Zhu, B. Yin, H. Xiang, Q. Huang, Direct liquid-immersion cooling of concentrator silicon solar cells in a linear concentrating photovoltaic receiver. Energy 65, 264–271 (2014)

    Article  CAS  Google Scholar 

  54. X. Han, Y. Wang, L. Zhu, The performance and long-term stability of silicon concentrator solar cells immersed in dielectric liquids. Energy Convers. Manag. 66, 189–198 (2013)

    Article  CAS  Google Scholar 

  55. G. Xin, Y. Wang, Y. Sun, Q. Huang, L. Zhu, Experimental study of liquid-immersion III–V multi-junction solar cells with dimethyl silicone oil under high concentrations. Energy Convers. Manag. 94, 169–177 (2015)

    Article  CAS  Google Scholar 

  56. X. Han, Q. Wang, J. Zheng, J. Qu, Thermal analysis of direct liquid-immersed solar receiver for a high concentrating photovoltaic system. Int. J. Photoenergy (2015)

    Google Scholar 

  57. X. Kang, Y.P. Wang, G.C. Xin, X.S. Shi, Experiment and simulation study on silicon oil immersion cooling densely-packed solar cells under high concentration ratio. Int. J. Energy Power Eng. 5(3), 90–96 (2016)

    Article  CAS  Google Scholar 

  58. X. Kang, Y. Wang, Q. Huang, Y. Cui, X. Shi, Y. Sun, Study on direct-contact phase-change liquid immersion cooling dense-array solar cells under high concentration ratios. Energy Convers. Manage. 128, 95–103 (2016)

    Article  CAS  Google Scholar 

  59. Y. Wang, C. Wen, Q. Huang, X. Kang, M. Chen, H. Wang, Performance comparison between ethanol phase-change immersion and active water cooling for solar cells in a high concentrating photovoltaic system. Energy Convers. Manage. 149, 505–513 (2017)

    Article  CAS  Google Scholar 

  60. Y. Wang, X. Shi, Q. Huang, Y. Cui, X. Kang, Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in the high concentrating photovoltaic system. Energy Convers. Manage. 135, 55–62 (2017)

    Article  CAS  Google Scholar 

  61. Y. Wang, L. Zhou, X. Kang, Q. Huang, X. Shi, C. Wang, Experimental and numerical optimization of direct-contact liquid film cooling in high concentration photovoltaic system. Energy Convers. Manage. 154, 603–614 (2017)

    Article  CAS  Google Scholar 

  62. L. R. Glicksman, R. L. R. J. Phillips, Forced-convection, liquid cooled; microchannel heat sinks for high power-density microelectronics, in Proceedings of the International Symposium on Cooling Technology for Electronic Equipment (1987), pp. 295–316

    Google Scholar 

  63. A.M. Adham, N. Mohd-Ghazali, R. Ahmad, Thermal and hydrodynamic analysis of microchannel heat sinks a review. Renew. Sustain. Energy Rev. 21(21), 614–622 (2013)

    Article  Google Scholar 

  64. J. A. A. Ortegón, J. P. Cassiano, E. M. Cardoso, J. B. C. Silva, CFD analysis of a microchannel heat sink cooling system for high concentration photovoltaic systems, in Cilamce, Florianópolis, SC, Brazil, November, 5–8 (2017)

    Google Scholar 

  65. M.D.H. Capua, R. Escobar, A.J. Diaz, A.M. Guzmán, Enhancement of the cooling capability of a high concentration photovoltaic system using microchannels with forwarding triangular ribs on sidewalls. Appl. Energy 226, 160–180 (2018)

    Article  Google Scholar 

  66. K. Vafai, L. Zhu, Analysis of two-layered micro-channel heat sink concept in electronic cooling. Int. J. Heat Mass Transf. 42(12), 2287–2297 (1999)

    Article  CAS  Google Scholar 

  67. X. Wei, Y. Joshi, Stacked microchannel heat sinks for liquid cooling of microelectronic components. J. Electron. Packag. 126(1), 60–66 (2004)

    Article  Google Scholar 

  68. A. Radwan, M. Ahmed, The influence of microchannel heat sink configurations on the performance of low concentrator photovoltaic systems. Appl. Energy 206, 594–611 (2017)

    Article  CAS  Google Scholar 

  69. I. A. Siyabi, K. Shanks, T. Mallick, S. Sundaram, Thermal analysis of a multi-layer microchannel heat sink for cooling concentrator photovoltaic (CPV) cells, in AIP Conference Proceedings, vol. 1881, No. 1 (AIP Publishing, 2017), Ottawa, Canada, p. 070001

    Google Scholar 

  70. J.H. Ryu, D.H. Choi, S.J. Kim, Three-dimensional numerical optimization of a manifold microchannel heat sink. Int. J. Heat Mass Transf. 46(9), 1553–1562 (2003)

    Article  Google Scholar 

  71. E. Kermani, S. Dessiatoun, A. Shooshtari, M. M. Ohadi, Experimental investigation of heat transfer performance of a manifold microchannel heat sink for cooling of concentrated solar cells, in Electronic Components and Technology Conference, 2009. ECTC 2009. 59th (IEEE, 2009), San Diego, California, USA pp. 453–459

    Google Scholar 

  72. K. Yang, C. Zuo, A novel multi-layer manifold microchannel cooling system for concentrating photovoltaic cells. Energy Convers. Manag. 89, 214–221 (2015)

    Article  Google Scholar 

  73. J. Dong, X. Zhuang, X. Xu, Z. Miao, B. Xu, Numerical analysis of a multi-channel active cooling system for densely packed concentrating photovoltaic cells. Energy Convers. Manag. 161, 172–181 (2018)

    Article  CAS  Google Scholar 

  74. A. Radwan, M. Ahmed, S. Ookawara, Performance enhancement of concentrated photovoltaic systems using a microchannel heat sink with nanofluids. Energy Convers. Manag. 119, 289–303 (2016)

    Article  CAS  Google Scholar 

  75. A. Radwan, S. Ookawara, S. Mori, M. Ahmed, Uniform cooling for concentrator photovoltaic cells and electronic chips by forced convective boiling in a 3D-printed monolithic double-layer microchannel heat sink. Energy Convers. Manag. 166, 356–371 (2018)

    Article  CAS  Google Scholar 

  76. B. W. Webb, C. F. Ma, Single-phase liquid jet impingement heat transfer, in Advances in Heat Transfer, vol. 26 (Elsevier, 1995), Salt Lake City, Utah, USA, pp. 105–217

    Google Scholar 

  77. D.Y. Lee, K. Vafai, Comparative analysis of jet impingement and microchannel cooling for high heat flux applications. Int. J. Heat Mass Transf. 42(9), 1555–1568 (1999)

    Article  CAS  Google Scholar 

  78. M. Ahmed, M. Eslamian, Laminar forced convection of a nanofluid in a microchannel: effect of flow inertia and external forces on heat transfer and fluid flow characteristics. Appl. Therm. Eng. 78, 326–338 (2015)

    Article  Google Scholar 

  79. C. Huh, M.H. Kim, An experimental investigation of flow boiling in an asymmetrically heated rectangular microchannel. Exp. Thermal Fluid Sci. 30(8), 775–784 (2006)

    Article  CAS  Google Scholar 

  80. L. Yin, R. Xu, P. Jiang, H. Cai, L. Jia, Subcooled flow boiling of water in a large aspect ratio microchannel. Int. J. Heat Mass Transf. 112, 1081–1089 (2017)

    Article  Google Scholar 

  81. W. Lin, Z. Ma, P. Cooper, M.I. Sohel, L. Yang, Thermal performance investigation and optimization of buildings with integrated phase change materials and solar photovoltaic thermal collectors. Energ. Buildings 116, 562–573 (2016)

    Article  Google Scholar 

  82. A. Hasan, S.J. McCormack, M.J. Huang, B. Norton, Characterization of phase change materials for thermal control of photovoltaics using differential scanning calorimetry and temperature history method. Energy Convers. Manag. 81, 322–329 (2014)

    Article  CAS  Google Scholar 

  83. M.J. Huang, P.C. Eames, B. Norton, Phase change materials for limiting temperature rise in building integrated photovoltaics. Sol. Energy 80(9), 1121–1130 (2006)

    Article  CAS  Google Scholar 

  84. M.J. Huang, P.C. Eames, B. Norton, N.J. Hewitt, Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Sol. Energy Mater. Sol. Cells 95(7), 1598–1603 (2011)

    Article  CAS  Google Scholar 

  85. U. Stritih, Increasing the efficiency of PV panel with the use of PCM. Renew. Energy 97, 671–679 (2016)

    Article  Google Scholar 

  86. S. Preet, B. Bhushan, T. Mahajan, Experimental investigation of water-based photovoltaic/thermal (PV/T) system with and without phase change material (PCM). Sol. Energy 155, 1104–1120 (2017)

    Article  CAS  Google Scholar 

  87. T. Klemm, A. Hassabou, A. Abdallah, O. Andersen, Thermal energy storage with phase change materials to increase the efficiency of solar photovoltaic modules. Energy Procedia 135, 193–202 (2017)

    Article  Google Scholar 

  88. Z. Luo, Z. Huang, N. Xie, X. Gao, T. Xu, Y. Fang, Z. Zhang, Numerical and experimental study on temperature control of solar panels with form-stable paraffin/expanded graphite composite PCM. Energy Convers. Manag. 149, 416–423 (2017)

    Article  CAS  Google Scholar 

  89. S. Nižetić, M. Arıcı, F. Bilgin, F. Grubišić-Čabo, Investigation of pork fat as potential novel phase change material for passive cooling applications in photovoltaics. J. Clean. Prod. 170, 1006–1016 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

Support from the National Natural Science Foundation of China (51706056) and China Postdoctoral Science Foundation (2018 M631927) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhai Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhuang, X., Xu, X., Cui, J. (2019). Thermal Management Techniques for Concentrating Photovoltaic Modules. In: Atesin, T.A., Bashir, S., Liu, J.L. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59594-7_9

Download citation

Publish with us

Policies and ethics