Skip to main content

Hostile Blockchain Takeovers (Short Paper)

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10958))

Included in the following conference series:

Abstract

Most research modelling Bitcoin-style decentralised consensus protocols has assumed profit-motivated participants. Complementary to this analysis, we revisit the notion of attackers with an extrinsic motivation to disrupt the consensus process (Goldfinger attacks). We outline several routes for obtaining a majority of decision-making power in the consensus protocol (a hostile takeover). Our analysis suggests several fundamental differences between proof-of-work and proof-of-stake systems in the face of such an adversary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are other potential attacks on proof-of-stake systems, such as purchasing keys from former stakeholders to induce a long fork (the “nothing-at-stake problem”). In this paper, we assume some solution exists for this problem and that a takeover requires obtaining a majority of the current stake in the system.

  2. 2.

    In addition to rendering graphics, GPUs are now commonly used for a variety of tasks including scientific computing and machine learning.

  3. 3.

    Our case studies are based on market data as of November 2017. We leave all values approximate to two significant figures. All values are in US dollars.

  4. 4.

    Note that we only consider bitcoin-denominated revenue. Many Bitcoin miners earn a small amount of additional revenue through merge-mining other currencies.

References

  1. Bonneau, J.: Why buy when you can rent? In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 19–26. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_2

    Chapter  Google Scholar 

  2. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 154–167. ACM (2016)

    Google Scholar 

  3. Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: On security analysis of proof-of-elapsed-time (PoET). In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_19

    Chapter  Google Scholar 

  4. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_28

    Chapter  Google Scholar 

  5. Fuchsbauer, G., Park, S., Kwon, A., Pietrzak, K., Alwen, J., Gazi, P.: Spacemint

    Google Scholar 

  6. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_10

    Chapter  Google Scholar 

  7. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10

    Chapter  Google Scholar 

  8. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the security and performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 3–16. ACM (2016)

    Google Scholar 

  9. Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic analysis of DDoS attacks against bitcoin mining pools. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 72–86. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_6

    Chapter  Google Scholar 

  10. Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining games. In: Proceedings of the 2016 ACM Conference on Economics and Computation

    Google Scholar 

  11. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of bitcoin mining, or bitcoin in the presence of adversaries. In: WEIS, June 2013

    Google Scholar 

  12. Liao, K., Katz, J.: Incentivizing double-spend collusion in bitcoin. In: Financial Cryptography Bitcoin Workshop (2017)

    Google Scholar 

  13. Luu, L., Velner, Y., Teutsch, J., Saxena, P.: Smart pool: practical decentralized pooled mining. IACR Cryptology ePrint Archive 2017, 19 (2017)

    Google Scholar 

  14. Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: repurposing bitcoin work for data preservation. In: IEEE Security & Privacy (2014)

    Google Scholar 

  15. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  16. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish mining and combining with an eclipse attack. In: IEEE EuroS&P (2016)

    Google Scholar 

  17. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 315–324. ACM (2017)

    Google Scholar 

  18. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4_30

    Chapter  Google Scholar 

  19. Sengupta, B., Bag, S., Ruj, S., Sakurai, K.: Retricoin: bitcoin based on compact proofs of retrievability. In: Proceedings of the 17th International Conference on Distributed Computing and Networking, p. 14. ACM (2016)

    Google Scholar 

  20. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks in the bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_5

    Chapter  Google Scholar 

  21. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bonneau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonneau, J. (2019). Hostile Blockchain Takeovers (Short Paper). In: Zohar, A., et al. Financial Cryptography and Data Security. FC 2018. Lecture Notes in Computer Science(), vol 10958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58820-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58820-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58819-2

  • Online ISBN: 978-3-662-58820-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics