Skip to main content

Compound Objects Comparators in Application to Similarity Detection and Object Recognition

  • Chapter
  • First Online:
Transactions on Rough Sets XXI

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 10810))

Abstract

This article presents similarity based reasoning approach for recognition of compound objects. It contains mathematical foundations for comparators theory as well as comparators network theory. It shows also three different practical applications in field of image recognition, text recognition and risk recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Knowledge discovery in databases.

  2. 2.

    pl.wikipedia.org/wiki/RFID.

  3. 3.

    \( [0,1]^{ref}\) this is a designation of the vector space \(\varvec{v}\) with the length |ref|, where each i’th coordinate \(v[i]\in [0,1]\) refers to the element \(y_{i}\in ref\), \(ref=\{y_1,\ldots ,y_{|ref|}\}\).

  4. 4.

    National Register of Territorial Divisions.

  5. 5.

    https://pl.wikipedia.org/wiki/RGB.

  6. 6.

    https://en.wikipedia.org/wiki/Flood_fill.

  7. 7.

    The next extreme point is chosen clockwise, basing on the 8-point neighborhood, remembering the recently visited points in order to backtrack, if necessary.

  8. 8.

    https://en.wikipedia.org/wiki/Levenshtein_distance.

  9. 9.

    http://www.icra-project.org.

  10. 10.

    Reporting and evidence system used by the State Fire Service.

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. Artif. Intell. Commun. 7(1), 39–59 (1994)

    Google Scholar 

  2. Agosta, L.: The Essential Guide to Data Warehousing. Essential Guide Series, Prentice Hall PTR (2000). https://books.google.pl/books?id=p492QgAACAAJ

  3. Aho, A.V.: Algorithms for finding patterns in strings. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, pp. 255–300. MIT Press, Cambridge (1990)

    Google Scholar 

  4. Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL. Morgan Kaufmann Publishers Inc., San Francisco (2008)

    Google Scholar 

  5. Arabas, J.: WykƂady z algorytmów ewolucyjnych. Wydawnictwo WNT, Warszawa (2004)

    Google Scholar 

  6. Ayodele, T.: Introduction to Machine Learning. INTECH Open Access Publisher (2010). http://books.google.pl/books?id=LqS_oAEACAAJ

  7. Barbie, M., Puppe, C., Tasnadi, A.: Non-manipulable domains for the borda count. No. 13 in Bonn econ discussion papers (2003)

    Google Scholar 

  8. Bembenik, R., Skonieczny, Ɓ., RybiƄski, H., Niezgódka, M. (eds.): Intelligent Tools for Building a Scientific Information Platform. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35647-6

    Book  Google Scholar 

  9. Bergmann, M.: An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and Derivation Systems. Cambridge University Press (2008). http://www.amazon.com/Introduction-Many-Valued-Fuzzy-Logic-Derivation/dp/0521707579%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0521707579

  10. Berry, M.J., Linoff, G.: Data Mining Techniques: For Marketing, Sales, and Customer Support. Wiley, New York (1997)

    Google Scholar 

  11. Berson, A., Smith, S.J.: Data Warehousing, Data Mining, and Olap, 1st edn. McGraw-Hill Inc., New York (1997)

    Google Scholar 

  12. Bishop, C.: Neural Networks for Pattern Recognition. Neural Networks for Pattern Recognition. Oxford University Press, Incorporated (1995). http://books.google.es/books?id=-aAwQO_-rXwC

  13. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33(3), 322–373 (2001)

    Article  Google Scholar 

  14. Brams, S.J., Fishburn, P.C.: Going from theory to practice: the mixed success of approval voting. Soc. Choice Welfare 25(2–3), 457–474 (2005)

    Article  MATH  Google Scholar 

  15. Brun, M., et al.: Model-based evaluation of clustering validation measures. Pattern Recogn. 40(3), 807–824 (2007). http://www.sciencedirect.com/science/article/pii/S0031320306003104

    Article  MATH  Google Scholar 

  16. BĂŒttcher, S., Clarke, C.L.A., Cormack, G.V.: Information Retrieval: Implementing and Evaluating Search Engines. MIT Press, Cambridge (2010). http://www.worldcat.org/title/information-retrieval-implementing-and-evaluating-search-engines/oclc/473652398?lang=de

    MATH  Google Scholar 

  17. CantĂș-Paz, E., Cheung, S.C.S., Kamath, C.: Retrieval of similar objects in simulation data using machine learning techniques. In: Image Processing: Algorithms and Systems, pp. 251–258 (2004)

    Google Scholar 

  18. Cornelis, C., Jensen, R., MartĂ­n, G.H., SlÈ©zak, D.: Attribute selection with fuzzy decision reducts. Inf. Sci. 180(2), 209–224 (2010). https://doi.org/10.1016/j.ins.2009.09.008

    Article  MathSciNet  MATH  Google Scholar 

  19. Cross, V., Yu, X., Hu, X.: Unifying ontological similarity measures: a theoretical and empirical investigation. Int. J. Approx. Reason. 54(7), 861–875 (2013)

    Article  Google Scholar 

  20. Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applications. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-662-03423-1. https://books.google.pl/books?id=6C09oNmYiAgC

    Book  MATH  Google Scholar 

  21. Deb, S.: Multimedia Systems and Content-based Image Retrieval. Idea Group Publishing (2004). http://books.google.pl/books?id=GcO4HGbMi7UC

  22. Elkind, E., Lang, J., Saffidine, A.: Choosing collectively optimal sets of alternatives based on the condorcet criterion. In: Walsh, T. (ed.) IJCAI, pp. 186–191. IJCAI/AAAI (2011). http://dblp.uni-trier.de/db/conf/ijcai/ijcai2011.html#ElkindLS11

  23. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Using complexity to protect elections. Commun. ACM 53(11), 74–82 (2010)

    Article  Google Scholar 

  24. Fodora, J.C., Ovchinnikov, S.: On aggregation of T-transitive fuzzy binary relations. Fuzzy Sets Syst. 72(2), 135–145 (1995). http://www.sciencedirect.com/science/article/pii/0165011494003469

    Article  MathSciNet  MATH  Google Scholar 

  25. Fokina, E.B., Friedman, S.-D.: Equivalence relations on classes of computable structures. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 198–207. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03073-4_21

    Chapter  Google Scholar 

  26. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Artificial Intelligence, Addison-Wesley (1989). http://books.google.pl/books?id=3_RQAAAAMAAJ

  27. Gomolinska, A., Wolski, M.: Rough inclusion functions and similarity indices. In: CS&P, pp. 145–156 (2013)

    Google Scholar 

  28. Gruber, M.: Mastering SQL, 1st edn. SYBEX Inc., Alameda (2000)

    Google Scholar 

  29. Gupta, K., Gupta, R.: Fuzzy equivalence relation redefined. Fuzzy Sets Syst. 79(2), 227–233 (1996). http://www.sciencedirect.com/science/article/pii/0165011495001557

    Article  MathSciNet  MATH  Google Scholar 

  30. Gwiazda, T.: Algorytmy genetyczne: kompendium. Operator krzyĆŒowania dla problemĂłw numerycznych. No. t. 1, Wydawnictwo Naukowe PWN (2007). https://books.google.pl/books?id=16-JGgAACAAJ

  31. Han, L., et al.: Firegrid: an e-infrastructure for next-generation emergency response support. J. Parallel Distrib. Comput. 70(11), 1128–1141 (2010)

    Article  Google Scholar 

  32. Hegenbarth, F.: Examples of free involutions on manifolds. Math. Ann. 224(2), 117–128 (1976). https://doi.org/10.1007/BF01436193

    Article  MathSciNet  MATH  Google Scholar 

  33. ISO 31000 - Risk management (2009)

    Google Scholar 

  34. Iwata, T., Saito, K., Yamada, T.: Modeling user behavior in recommender systems based on maximum entropy. In: WWW, pp. 1281–1282 (2007)

    Google Scholar 

  35. Janusz, A., ƚlÈ©zak, D., Nguyen, H.S.: Unsupervised similarity learning from textual data. Fundam. Inform. 119(3–4), 319–336 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Kacprzyk, J.: Multistage Fuzzy Control: A Model-based Approach to Fuzzy Control and Decision Making. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  37. Klement, E.P., Pap, E., Mesiar, R.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000). http://opac.inria.fr/record=b1104736

    Book  MATH  Google Scholar 

  38. Kolpakov, R., Raffinot, M.: Faster text fingerprinting. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 15–26. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89097-3_4

    Chapter  Google Scholar 

  39. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial (1998)

    Google Scholar 

  40. Koronacki, J., Mielniczuk, J.: Statistics: for students of technical and natural sciences (in polish). Wydawnictwa Naukowo-Techniczne (2001). http://books.google.pl/books?id=TI4NAQAACAAJ

  41. KosiƄski, R.: Sztuczne sieci neuronowe: dynamika nieliniowa i chaos. Wydawnictwa Naukowo-Techniczne (2004). https://books.google.pl/books?id=BgmKtwAACAAJ

  42. Krasuski, A., Jankowski, A., Skowron, A., ƚlÈ©zak, D.: From sensory data to decision making: a perspective on supporting a fire commander. In: Web Intelligence/IAT Workshops, pp. 229–236 (2013)

    Google Scholar 

  43. Krasuski, A., Janusz, A.: Semantic tagging of heterogeneous data: labeling fire & rescue incidents with threats. In: FedCSIS, pp. 77–82 (2013)

    Google Scholar 

  44. Kulikowski, J.L.: Toward computer-aided interpretation of situations. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol. 226. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-319-00969-8_1

    Chapter  Google Scholar 

  45. Levitin, G., Lisnianski, A.: Reliability optimization for weighted voting system. Rel. Eng. Sys. Saf. 71(2), 131–138 (2001)

    Article  Google Scholar 

  46. Lin, X., Yacoub, S., Burns, J., Simske, S.: Performance analysis of pattern classifier combination by plurality voting. Pattern Recogn. Lett. 24(12), 1959–1969 (2003)

    Article  Google Scholar 

  47. Luckham, D.: The Power of Events: an Introduction to Complex Event Processing in Distributed Enterprise Systems. The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems, ADDISON WESLEY Publishing Company Incorporated (2002). http://books.google.es/books?id=AN1QAAAAMAAJ

  48. MacParthalain, N., Jensen, R.: Simultaneous feature and instance selection using fuzzy-rough bireducts. In: FUZZ-IEEE 2013, IEEE International Conference on Fuzzy Systems, Hyderabad, India, 7–10 July 2013, Proceedings, pp. 1–8 (2013). http://dx.doi.org/10.1109/FUZZ-IEEE.2013.6622500

  49. Maedche, A., Staab, S.: Comparing ontologies – similarity measures and a comparison study. Technical report, Institute AIFB, University of Karlsruhe, March 2001

    Google Scholar 

  50. Mallik, A., Chaudhury, S., Ghosh, H.: Nrityakosha: preserving the intangible heritage of indian classical dance. JOCCH 4(3), 11 (2011)

    Article  Google Scholar 

  51. Malmstadt, H., Enke, C., Crouch, S.: Electronic Analog Measurements and Transducers: Instrumentation for Scientists Series 1. Analog Measurements and Transducers. Benjamin (1973). http://books.google.pl/books?id=U9XkSAAACAAJ

  52. Marin, N., Medina, J.M., Pons, O., Sanchez, D., Vila, M.A.: Complex object comparison in a fuzzy context. Inf. Softw. Technol. 45, 431–444 (2003)

    Article  Google Scholar 

  53. Mas, M., Monserrat, M., Torrens, J.: Modus ponens and modus tollens in discrete implications. Int. J. Approx. Reason. 49(2), 422–435 (2008). https://www.sciencedirect.com/science/article/pii/S0888613X08000637

    Article  MathSciNet  MATH  Google Scholar 

  54. McKelvey, R.D., Patty, J.W.: A theory of voting in large elections. Game Econ. Behav. 57(1), 155–180 (2006). https://www.sciencedirect.com/science/article/pii/S0899825606000698

    Article  MathSciNet  MATH  Google Scholar 

  55. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer-Verlag, London (1996). https://doi.org/10.1007/978-3-662-03315-9

    Book  MATH  Google Scholar 

  56. Mitchell, T.M.: Machine Learning. McGraw Hill Series in Computer Science. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  57. Molodtsov, D.: Soft set theory - first results. Comput. Math. Appl. 37(4–5), 19–31 (1999). http://www.sciencedirect.com/science/article/pii/S0898122199000565

    Article  MathSciNet  MATH  Google Scholar 

  58. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001). https://doi.org/10.1145/375360.375365

    Article  Google Scholar 

  59. Nesenbergs, M., Mowery, V.O.: Logic synthesis of some high-speed digital comparators. Bell Syst. Tech. J. 38, 19–44 (1959)

    Article  Google Scholar 

  60. Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. LNCS Trans. Rough Sets 1(3100), 187–208 (2004)

    Article  MATH  Google Scholar 

  61. Pal, S., Shiu, S.: Foundations of Soft Case-Based Reasoning. Wiley Series on Intelligent Systems, Wiley (2004). http://books.google.es/books?id=LqZkJ_snUiYC

    Book  Google Scholar 

  62. Pawlak, Z.: On rough sets. Bull. EATCS 24, 94–108 (1984)

    Google Scholar 

  63. Pawlak, Z.: Rough set theory. KI 15(3), 38–39 (2001)

    MathSciNet  Google Scholar 

  64. Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177(1), 28–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Pedrycz, W., Skowron, A., Kreinovich, V.: Handbook of Granular Computing. Wiley (2008). http://books.google.fr/books?id=CpMrHqMPe2UC

  66. Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. Foundations and Applications (Machine Perception and Artificial Intelligence). World Scientific Publishing Co., River Edge (2005)

    Book  MATH  Google Scholar 

  67. Peters, J.F.: Near sets: an introduction. Math. Comput. Sci. 7(1), 3–9 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  68. Polkowski, L.: Approximate Reasoning by Parts: An Introduction to Rough Mereology. Intelligent Systems Reference Library. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22279-5

    Book  Google Scholar 

  69. Polkowski, L., Artiemjew, P.: Granular Computing in Decision Approximation. ISRL, vol. 77. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12880-1

    Book  MATH  Google Scholar 

  70. Quackenbush, R.W.: On the composition of idempotent functions. Algebra Univers. 1(1), 7–12 (1971). http://dx.doi.org/10.1007/BF02944949

    Article  MathSciNet  MATH  Google Scholar 

  71. Rasmusen, E.: Games and Information: An Introduction to Game Theory. Blackwell (2001). https://books.google.pl/books?id=7ylayBG9sa4C

  72. Rinaldi, A.M.: An ontology-driven approach for semantic information retrieval on the web. ACM Trans. Internet Technol. 9, 10:1–10:24 (2009). http://doi.acm.org/10.1145/1552291.1552293

    Article  Google Scholar 

  73. Riza, L.S., et al.: Implementing algorithms of rough set theory and fuzzy rough set theory in the R package “roughsets”. Inf. Sci. 287, 68–89 (2014). http://dx.doi.org/10.1016/j.ins.2014.07.029

    Article  Google Scholar 

  74. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Manual, 2nd edn. Pearson Higher Education, London (2004)

    Google Scholar 

  75. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Neurocomputing: Foundations of Research. Learning Representations by Back-propagating Errors, pp. 696–699. MIT Press, Cambridge (1988). http://dl.acm.org/citation.cfm?id=65669.104451

    Google Scholar 

  76. Russ, J.: The Image Processing Handbook, 6th edn. Taylor & Francis, Abingdon-on-Thames (2011). http://books.google.pl/books?id=gxXXRJWfEsoC

    MATH  Google Scholar 

  77. Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-76288-1. http://books.google.es/books?id=iRTGlFXt1lwC

    Book  MATH  Google Scholar 

  78. Saari, D.G.: The Optimal Ranking Method is the Borda Count. Discussion Papers 638, Northwestern University, Center for Mathematical Studies in Economics and Management Science, January 1985. https://ideas.repec.org/p/nwu/cmsems/638.html

  79. Saari, D.G., Merlin, V.R.: The Copeland Method. I: Relat. Dictionary 8, 51–76 (1996)

    MathSciNet  MATH  Google Scholar 

  80. Schickel-Zuber, V., Faltings, B.: OSS: a semantic similarity function based on hierarchical ontologies. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 551–556. Morgan Kaufmann Publishers Inc., San Francisco (2007). http://dl.acm.org/citation.cfm?id=1625275.1625363

  81. Serpico, S., Bruzzone, L., Roli, F.: An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images. Pattern Recogn. Lett. 17(13), 1331–1341 (1996). http://www.sciencedirect.com/science/article/pii/S0167865596000906. Special Issue on Non-conventional Pattern Analysis in Remote Sensing

    Article  Google Scholar 

  82. Shannon, C.E.: A mathematical theory of communication. The Bell Syst. Tech. J. 27, 379–423, 623–656 (July, October 1948). http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

    Article  MathSciNet  MATH  Google Scholar 

  83. Skowron, A., Polkowski, L.: Rough mereological foundations for design, analysis, synthesis, and control in distributed systems. In: Proceedings The Second Joint Annual Conference on Information Sciences, Wrightsville Beach, NC, pp. 129–156 (1998)

    Google Scholar 

  84. ƚlÈ©zak, D., Sosnowski, Ɓ.: SQL-based compound object comparators: a case study of images stored in ICE. In: Kim, T., Kim, H.-K., Khan, M.K., Kiumi, A., Fang, W., ƚlęzak, D. (eds.) ASEA 2010. CCIS, vol. 117, pp. 303–316. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17578-7_30

    Chapter  Google Scholar 

  85. ƚlÈ©zak, D.: Approximate reducts in decision tables. In: 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 1159–1164. Universidad de Granada (1996)

    Google Scholar 

  86. ƚlÈ©zak, D., Janusz, A.: Ensembles of bireducts: towards robust classification and simple representation. In: Kim, T., et al. (eds.) FGIT 2011. LNCS, vol. 7105, pp. 64–77. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27142-7_9

    Chapter  Google Scholar 

  87. ĆšÈ©lzak, D., Szczuka, M.: Rough neural networks for complex concepts. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 574–582. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72530-5_69

    Chapter  Google Scholar 

  88. Slowinski, R.: A generalization of the indiscernibility relation for rough set analysis of quantitative information. Riv. Matematica Economiche e Sociali 15(1), 65–78 (1992)

    MathSciNet  MATH  Google Scholar 

  89. Smith, W.D.: Range voting (2000)

    Google Scholar 

  90. Sosnowski, Ɓ.: Identification with compound object comparators technical aspects. In: HoƂubiec, J. (ed.) Techniki informacyjne teoria i zastosowania, vol. 1, pp. 168–179. IBS PAN (2011)

    Google Scholar 

  91. Sosnowski, Ɓ.: Characters recognition based on network of comparators. In: MyƛliƄski, A. (ed.) Techniki informacyjne teoria i zastosowania, vol. 4, pp. 123–134. IBS PAN (2012)

    Google Scholar 

  92. Sosnowski, Ɓ.: Applications of comparators in data processing systems. Technical Transactions Automatic Control, pp. 81–98 (2013)

    Google Scholar 

  93. Sosnowski, Ɓ.: Framework of compound object comparators. Intell. Decis. Technol. 9(4), 343–363 (2015)

    Article  Google Scholar 

  94. Sosnowski, Ɓ., Pietruszka, A., Krasuski, A., Janusz, A.: A resemblance based approach for recognition of risks at a fire ground. In: ƚlÈ©zak, D., Schaefer, G., Vuong, S.T., Kim, Y.-S. (eds.) AMT 2014. LNCS, vol. 8610, pp. 559–570. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09912-5_47

    Chapter  Google Scholar 

  95. Sosnowski, Ɓ., Pietruszka, A., Ɓazowy, S.: Election algorithms applied to the global aggregation in networks of comparators. In: M. Ganzha, L., Maciaszek, M.P., (ed.), Proceedings of the 2014 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 2, pp. 135–144. IEEE (2014). http://dx.doi.org/10.15439/2014F494

  96. Sosnowski, Ɓ., ƚlÈ©zak, D.: Comparators for compound object identification. In: Kuznetsov, S.O., ƚlęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743, pp. 342–349. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21881-1_53

    Chapter  Google Scholar 

  97. Sosnowski, Ɓ., ƚlÈ©zak, D.: Learning in comparator networks. In: Kacprzyk, J., Szmidt, E., ZadroĆŒny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT -2017. AISC, vol. 643, pp. 316–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66827-7_29

    Chapter  Google Scholar 

  98. Sosnowski, Ɓ., ƚlÈ©zak, D.: RDBMS framework for contour identification. In: Szczuka, M., Czaja, L., Skowron, A., Kacprzak, M. (eds.) CS&P, pp. 487–498. BiaƂystok University of Technology, PuƂtusk (2011). electronic edition

    Google Scholar 

  99. Sosnowski, Ɓ., ƚlÈ©zak, D.: How to design a network of comparators. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds.) BHI 2013. LNCS (LNAI), vol. 8211, pp. 389–398. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02753-1_39

    Chapter  Google Scholar 

  100. Sosnowski, Ɓ., ƚlÈ©zak, D.: Networks of compound object comparators. In: FUZZ-IEEE, pp. 1–8 (2013)

    Google Scholar 

  101. Sosnowski, Ɓ., ƚlÈ©zak, D.: Fuzzy set interpretation of comparator networks. In: Kryszkiewicz, M., Bandyopadhyay, S., Rybinski, H., Pal, S.K. (eds.) PReMI 2015. LNCS, vol. 9124, pp. 345–353. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19941-2_33

    Chapter  Google Scholar 

  102. Sosnowski, L., Szczuka, M.S.: Recognition of compound objects based on network of comparators. In: Proceedings of FedCSIS 2016, Position Papers, pp. 33–40 (2016)

    Google Scholar 

  103. Staab, S., Maedche, A.: Knowledge portals: ontologies at work. AI Mag. 22(2), 63–75 (2001)

    Google Scholar 

  104. Stahl, A., Gabel, T.: Using evolution programs to learn local similarity measures. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS (LNAI), vol. 2689, pp. 537–551. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45006-8_41

    Chapter  Google Scholar 

  105. Sundaram, N., et al.: Streaming similarity search over one billion tweets using parallel locality-sensitive hashing. PVLDB 6(14), 1930–1941 (2013)

    Google Scholar 

  106. Szczuka, M., ƚlÈ©zak, D.: Feedforward neural networks for compound signals. Theoret. Comput. Sci. 412(42), 5960–5973 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  107. Szczuka, M.: The use of rough set methods in knowledge discovery in databases. In: Kuznetsov, S.O., ƚlÈ©zak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743, pp. 28–30. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21881-1_6

    Chapter  Google Scholar 

  108. Szczuka, M.S., Sosnowski, Ɓ., Krasuski, A., KreƄski, K.: Using domain knowledge in initial stages of KDD: optimization of compound object processing. Fundam. Inform. 129(4), 341–364 (2014)

    MathSciNet  Google Scholar 

  109. Tho, D.: Perceptron Problem in Neural Network. GRIN Verlag (2010). https://books.google.pl/books?id=eLWmQfpgansC

  110. Tietze, U., Schenk, C., Gamm, E.: Electronic Circuits. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78655-9. http://books.google.pl/books?id=NB5GAQAAIAAJ

    Book  Google Scholar 

  111. Turksen, I.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 20(2), 191–210 (1986). http://www.sciencedirect.com/science/article/pii/0165011486900771

    Article  MathSciNet  MATH  Google Scholar 

  112. Tversky, A., Shafir, E.: Preference, Belief, and Similarity: Selected Writings. MIT Press, Cambridge (2004)

    Google Scholar 

  113. Wilkinson, B.: The Essence of Digital Design. Essence of Engineering. Prentice Hall, Upper Saddle River (1998). http://books.google.es/books?id=-BNTAAAAMAAJ

    Google Scholar 

  114. Yager, R.R., Filev, D.: Summarizing data using a similarity based mountain method. Inf. Sci. 178(3), 816–826 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  115. Yang, X., Lin, T.Y., Yang, J., Li, Y., Yu, D.: Combination of interval-valued fuzzy set and soft set. Comput. Math. Appl. 58(3), 521–527 (2009). http://www.sciencedirect.com/science/article/pii/S0898122109003228

    Article  MathSciNet  MATH  Google Scholar 

  116. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. J. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  117. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  118. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  119. Zadeh, L.A.: Computing with Words - Principal Concepts and Ideas. Studies in Fuzziness and Soft Computing, vol. 277. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27473-2

    Book  MATH  Google Scholar 

  120. Zadeh, P.D.H., Reformat, M.: Feature-based similarity assessment in ontology using fuzzy set theory. In: FUZZ-IEEE, pp. 1–7 (2012)

    Google Scholar 

  121. Zhao, Y., Luo, F., Wong, S.K.M., Yao, Y.: A general definition of an attribute reduct. In: Yao, J.T., Lingras, P., Wu, W.-Z., Szczuka, M., Cercone, N.J., ƚlęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 101–108. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72458-2_12

    Chapter  Google Scholar 

  122. Zhou, J., Pedrycz, W., Miao, D.: Shadowed sets in the characterization of rough-fuzzy clustering. Pattern Recogn. 44(8), 1738–1749 (2011). http://dx.doi.org/10.1016/j.patcog.2011.01.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ɓukasz Sosnowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sosnowski, Ɓ. (2019). Compound Objects Comparators in Application to Similarity Detection and Object Recognition. In: Peters, J., Skowron, A. (eds) Transactions on Rough Sets XXI. Lecture Notes in Computer Science(), vol 10810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58768-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58768-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58767-6

  • Online ISBN: 978-3-662-58768-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics