Skip to main content

Tissue Engineering for the Cartilage Repair of the Ankle

  • Chapter
  • First Online:
Book cover Sports Injuries of the Foot and Ankle

Abstract

Osteochondral lesions of the talus (OLTs) are common cause of postresidual pain after ankle injury. The “gold standard” has not been established over the years, which is why a variety of different methods of cartilage lesion treatment have been used. Microfracture and bone marrow stimulation, although offered fast return to sports, had worse results in a long-term follow-up. Autologous chondrocyte implantation (ACI) was a next step in treatment of OLTs. However, it is a complex and invasive two-step surgery that requires arthrotomy and, in most of the cases, a medial malleolus osteotomy. Furthermore, the cost of the full procedure is high. The evolution of tissue engineering and scaffold development provided an opportunity to change the surgery technique. A single-stage procedure with the use of hyaluronic acid-based scaffold combined with bone marrow-derived cells has become an alternative to the aforementioned techniques offering a good clinical outcome and satisfactory long-term results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shepherd DET, Seedhom BB. Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis. 1999;58(1):27–34.

    Article  CAS  Google Scholar 

  2. Murawski CD, Kennedy JG. Operative treatment of osteochondral lesions of the talus. J Bone Joint Surg Am. 2013;95(11):1045–54.

    Article  Google Scholar 

  3. Verhagen RA, Struijs PA, Bossuyt PM, van Dijk CN. Systematic review of treatment strategies for osteochondral defects of the talar dome. Foot Ankle Clin. 2003;8(2):233–42.

    Article  Google Scholar 

  4. Hunt SA, Sherman O. Arthroscopic treatment of osteochondral lesions of the talus with correlation of outcome scoring systems. Arthroscopy. 2003;19(4):360–7.

    Article  Google Scholar 

  5. Robinson DE, Winson IG, Harries WJ, Kelly AJ. Arthroscopic treatment of osteochondral lesions of the talus. J Bone Joint Surg (Br). 2003;85(7):989–93.

    Article  CAS  Google Scholar 

  6. Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy. 2006;22(10):1085–92.

    Article  Google Scholar 

  7. Ferkel RD, Zanotti RM, Komenda GA, Sgaglione NA, Cheng MS, Applegate GR, Dopirak RM. Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med. 2008;36(9):1750–62.

    Article  Google Scholar 

  8. Giannini S, Battaglia M, Buda R, Cavallo M, Ruffilli A, Vannini F. Surgical treatment of osteochondral lesions of the talus by open-field autologous chondrocyte implantation: a 10-year follow-up clinical and magnetic resonance imaging T2-mapping evaluation. Am J Sports Med. 2009;37(Suppl 1):112S–8S.

    Article  Google Scholar 

  9. Kwak SK, Kern BS, Ferkel RD, Chan KW, Kasraeian S, Applegate GR. Autologous chondrocyte implantation of the ankle: 2- to 10-year results. Am J Sports Med. 2014;42(9):2156–64.

    Article  Google Scholar 

  10. Pereterson L, Mandelbaum B, Gobbi A, Francisco R, Autologous Chondrocyte transplantation of the ankle, Basic science, clinical repair and reconstruction of articular cartilage defects: current status and prospects. Timeo. 2006:341–347.

    Google Scholar 

  11. Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med. 2014;42(3):648–57.

    Article  Google Scholar 

  12. O'Brien F. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.

    Article  CAS  Google Scholar 

  13. Scotti C, Leumann A, Candrian C, et al. Autologous tissue-engineered osteochondral graft for talus osteochondral lesions: state-of-the-art and future perspectives. Tech Foot & Ankle Surg. 2011;10(4):163–8.

    Google Scholar 

  14. Frenkel S, Di Cesare P. Scaffolds for articular cartilage repair. Ann Biomed Eng. 2004;32(1):26–34.

    Article  Google Scholar 

  15. Marcacci M, Berruto M, Brocchetta D, et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res. 2005;435:96–105.

    Article  Google Scholar 

  16. Gobbi A, Kon E, Berruto M, et al. Patellofemoral full-thickness chondral defects treated with Hyalo-graft-C: a clinical, arthroscopic, and histologic review. Am J Sports Med. 2006;34:1763–73.

    Article  Google Scholar 

  17. Gobbi A, Katzarnikos G, Lad D. Osteochondral lesions of the talar dome: matrix-induced autologous chondrocyte implantation. In: The foot and ankle: AANA advanced arthroscopic surgical techniques. Thorofare: Slack Inc; 2016. p. 37–48.

    Google Scholar 

  18. McCarthy HS, Roberts S. A histological comparison of the repair tissue formed when using either Chondrogide(®) or periosteum during autologous chondrocyte implantation. Osteoarthr Cartil. 2013;12:2048–57.

    Article  Google Scholar 

  19. Valderrabano V, Miska M, Leumann A, et al. Reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med. 2013;41(3):519–27.

    Article  Google Scholar 

  20. Albano D, Martinelli N, Bianchi A, Messina C, Malerba F, Sconfienza LM. Clinical and imaging outcome of osteochondral lesions of the talus treated using autologous matrix-induced chondrogenesis technique with a biomimetic scaffold. BMC Musculoskelet Disord. 2017;18(1):306.

    Article  Google Scholar 

  21. Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M. Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc. 2016;24(7):2380–7.

    Article  Google Scholar 

  22. Giannini S, Buda R, Battaglia M, et al. One-step repair in talar osteochondral lesions:4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med. 2013;41:511–8.

    Article  Google Scholar 

  23. Cavallo C, Desando G, Cattini L, et al. Bone marrow concentrated cell transplantation: rationale for its use in the treatment of human osteochondral lesions. J Biol Regul Homeost Agents. 2013;27(1):165–75.

    CAS  PubMed  Google Scholar 

  24. Mesenchymal CA. Stem cells. The past, the present, the future. Cartilage. 2010;1(1):6–9.

    Article  Google Scholar 

  25. Buda R, Vannini F, Castagnini F, et al. Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop. 2015;39:893–900.

    Article  Google Scholar 

  26. Gobbi A, Karnatzikos G, Scotti C, et al. One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. Cartilage. 2011;2(3):286–99.

    Article  Google Scholar 

  27. Gobbi A, Whyte GP. Osteochondritis dissecans: pathoanatomy, classification, and advances in biologic surgical treatment. In: Bio-orthopedics. Berlin, Heidelberg: Springer; 2017. p. 489–501.

    Chapter  Google Scholar 

  28. Murray IR, Robinson PG, West CC, et al. Reporting standards in clinical studies evaluating bone marrow aspirate concentrate: a systematic review. Arthrosc J Arthrosc Relat Surg. 2018;34(4):1366–75.

    Article  Google Scholar 

  29. Kasten P, Beyen I, Egermann M, et al. Instant stem cell therapy: characterization and concentration of human mesenchymal stem cells in vitro. Eur Cell Mater. 2008;16:47–55.

    Article  CAS  Google Scholar 

  30. Nehrer S, Domayer SE, Hirschfeld C, Stelzeneder D, Trattnig S, Dorotka R. Matrix-associated and autologous chondrocyte transplantation in the ankle: clinical and MRI follow-up after 2 to 11 years. Cartilage. 2011;2(1):81.

    Article  Google Scholar 

  31. Sadlik B, Gobbi A, Puszkarz M, Klon W, Whyte GP. Biologic inlay osteochondral reconstruction: arthroscopic one-step osteochondral lesion repair in the knee using morselized bone grafting and hyaluronic acid-based scaffold embedded with bone marrow aspirate concentrate. Arthrosc Tech. 2017;6(2):e383.

    Article  Google Scholar 

  32. Rothrauff BB, Murawski CD, Angthong C, et al. Scaffold-based therapies: proceedings of the international consensus meeting on cartilage repair of the ankle. Foot Ankle Int. 2018;39:41S–7S.

    Article  Google Scholar 

  33. Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B. One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res. 2009;467(12):3307–20.

    Article  Google Scholar 

  34. Vannini F, Cavallo M, Ramponi L, et al. Return to sports after bone marrow–derived cell transplantation for osteochondral lesions of the talus. Cartilage. 2017;8(1):80–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gobbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gobbi, A., Nehrer, S., Neubauer, M., Herman, K. (2019). Tissue Engineering for the Cartilage Repair of the Ankle. In: Canata, G., d'Hooghe, P., Hunt, K., Kerkhoffs, G., Longo, U. (eds) Sports Injuries of the Foot and Ankle. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58704-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58704-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58703-4

  • Online ISBN: 978-3-662-58704-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics