Skip to main content

DME – A Sustainable Fuel Solution for Clean and Closed CO2-Cycle-Mobility for CI Powertrain

  • Chapter
  • First Online:
  • 16k Accesses

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

Abstract

Reducing emissions and greenhouse gas emissions have become the major challenge for developing sustainable powertrain concepts. In addition to electrification strategies up to full battery electric vehicles, the conventional internal combustion engine can fulfil the CO2 and emission requirements if the fuel of the engine is carefully selected. In the paper, DME (Dimethyl ether) as a promising Diesel fuel replacement will be discussed with regard to mixture preparation, combustion and emission performance and compared against the conventional Diesel baseline. For the comparison, results of detailed simulations and experimental investigations (Spray chamber, single cylinder engine) will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arcoumanis C, Bae C, Crookes R, Kinoshita E (2008) The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: a review. Fuel 87:1014–1030. https://doi.org/10.1016/j.fuel.2007.06.007

    Article  Google Scholar 

  2. Tamor M (2017) A pragmatic approach to deep reduction in U.S. CO2 emissions. In: Liebl J, Beidl C (eds) Internationaler Motorenkongress 2017, Proceedings. Springer Vieweg, Wiesbaden

    Google Scholar 

  3. Landälv I, Gebart R, Marke B, Granberg F, Furusjö E, Löwnertz P, Öhrman OG, Sørensen EL, Salomonsson P (2014) Two years experience of the BioDME project—a complete wood to wheel concept. Environ Prog Sustain. Energy 33:744–750. https://doi.org/10.1002/ep.11993

    Article  Google Scholar 

  4. “Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context” Version 4, (Report EUR 26028 EN – 2013). https://iet.jrc.ec.europa.eu/about-jec/downloads

  5. FVV-Abschlussbericht (2013) Kraftstoffstudie-Zukünftige Kraftstoffe für Verbrennungsmotoren und Gasturbinen, (1031)

    Google Scholar 

  6. DIN EN 590 (1999) Automotive fuels-Diesel-Requirements and test methods, Breuth Verlag GmbH, Rev

    Google Scholar 

  7. Pubchem open chemistry database. https://pubchem.ncbi.nlm.nih.gov/

  8. Sivebaek IM, Jakobsen J (2007) The viscosity of dimethyl ether. Tribol Int 40(4):652–658. https://doi.org/10.1016/j.triboint.2005.11.005

    Article  Google Scholar 

  9. National Institute of Standards and Technology (2017) NIST chemistry WebBook: SRD 69. http://webbook.nist.gov/chemistry/. Accessed 24 July 2017

  10. Dzida M, Prusakiewicz P (2008) The effect of temperature and pressure on the physicochemical properties of petroleum diesel oil and biodiesel fuel. Fuel 87(10):1941–1948

    Article  Google Scholar 

  11. Tanaka K, Higashi Y (2010) Measurements of the isobaric specifiv heat capacity and density for dimethyl ether in the liquid state. J Chem Eng Data 55:2658–2661

    Article  Google Scholar 

  12. Westbrook CK, Pitz WJ, Curran HJ (2006) Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines. J Phys Chem A 110(21):6912–6922. https://doi.org/10.1021/jp056362g

    Article  Google Scholar 

  13. Barrientos EJ, Lapuerta M, Boehman AL (2013) Group additivity in soot formation for the example of C-5 oxygenated hydrocarbon fuels. Combust Flame 160(8):1484–1498. https://doi.org/10.1016/j.combustflame.2013.02.024

    Article  Google Scholar 

  14. Lefebvre AH (1989) Atomization and sprays. Hemisphere Publishing Corporation, New York

    Google Scholar 

  15. Musculus M, Dec JE, Tree DR (2002) Effects of fuel parameters and diffusion flame lift-off on soot formation in a heavy-duty DI diesel engine. SAE technical paper, 2002-01-0889

    Google Scholar 

  16. Converge CFD v2.3.6

    Google Scholar 

  17. Bhagatwala A, Luo Z, Lu TF, Shen H, Sutton JA, Chen JH (2014) Numerical and experimental investigation of turbulent DME jet flames. In: Proceedings of the Combustion Institute. https://doi.org/10.1016/j.proci.2014.05.147

Download references

Acknowledgement

The authors would like to acknowledge the support of the German ministry for economy and energy (BMWi) for the financial funding of the xME-Diesel project as well as TÜV Rheinland and FVV for their administrative support. Further to that, the authors would like to thank their partners DENSO, IAV and the LVK from TU Munich as well as Oberon Fuels for DME fuel support. Simulations were performed with computing resources granted by RWTH Aachen University under project rwth0158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Willems .

Editor information

Editors and Affiliations

Glossary

CN

Cetane number

CPC

Constand pressure chamber

DME

Dimethyl ether

EGR

Exhaust Gas Recirculation

GHG

Green house gas

GPL

Gaseous Penetration Length

LOL

Flame Lift off length

LPL

Liquid Penetration Length

OME

Oxymethylen-ether

TtW

Tank-to Wheel

WtW

Well-to Wheel

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zubel, M., Ottenwälder, T., Heuser, B., Herudek, C., Maas, H., Willems, W. (2019). DME – A Sustainable Fuel Solution for Clean and Closed CO2-Cycle-Mobility for CI Powertrain. In: Maus, W. (eds) Zukünftige Kraftstoffe. ATZ/MTZ-Fachbuch. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58006-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58006-6_30

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58005-9

  • Online ISBN: 978-3-662-58006-6

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics