Skip to main content

Sustainable Fuel from CO2 and Electricity: A Commercial Scale Solution Ready to Meet Future Challenges

  • Chapter
  • First Online:
Book cover Zukünftige Kraftstoffe

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

  • 16k Accesses

Abstract

Since the early 20th century, transport by road, sea and air has mainly been fueled by liquid hydrocarbons derived from crude oil. As crude oil derivatives have enjoyed a large cost advantage compared to alternative more sustainable fuels, the symbiotic development of fuel distribution and engine technology has centered around fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    US Energy Information Administration.

  2. 2.

    Eurostat.

  3. 3.

    http://www.audi-mediacenter.com.

  4. 4.

    http://www.sunfire.de.

  5. 5.

    http://solazymeindustrials.com.

  6. 6.

    http://algenol.com/biofuelproducts/.

  7. 7.

    http://www.lanzatech.com/worlds-first-commercial-waste-gas-ethanol-plant-starts/.

  8. 8.

    http://www.cri.is.

  9. 9.

    https://www.resourcepark.is/.

  10. 10.

    https://www.nordpoolgroup.com/historical-market-data/.

  11. 11.

    https://www.iscc-system.org.

  12. 12.

    US Energy Information Administration (EIA) “China’s use of methanol in liquid fuels has grown rapidly since 2000” https://www.eia.gov/todayinenergy/detail.php?id=30072 and Oxford Institute for Energy Studies “Gasoline Demand in Non-OECD Asia” https://www.oxfordenergy.org/wpcms/wp-content/uploads/2017/11/Gasoline-Demand-in-Non-OECD-Asia-Drivers-and-Constraints-WPM-74.pdf.

  13. 13.

    http://www.enerkem.com.

  14. 14.

    https://www.exxonmobilchemical.com.

  15. 15.

    https://oorjafuelcells.com.

  16. 16.

    https://www.sfc.com/en.

  17. 17.

    http://serenergy.com.

References

  1. IEA International Energy Agency (2017) Global EV Outlook 2017: Two million and counting. IEA Publ 1–71. https://doi.org/10.1787/9789264278882-en

  2. Romare M, Dahllöf L (2017) The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium-Ion Batteries

    Google Scholar 

  3. Bloomberg Finance Energy (2017) Electric vehicle outlook 2017, pp 1–5

    Google Scholar 

  4. Figueres C, Schellnhuber HJ, Whiteman G et al (2017) Three years to safeguard our climate. Nature 546:593–595. https://doi.org/10.1038/546593a

    Article  Google Scholar 

  5. Olah GA, Goeppert A, Prakash GKS (2009) Beyond oil and gas: the methanol economy, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  6. Harp G, Tran KC, Bergins C, et al (2015) Application of power to methanol technology to integrated steelworks for profitability, conversion efficiency, and CO2 reduction. In: METEC & 2nd ESTAD, Düsseldorf, Germany

    Google Scholar 

  7. Rubin ES, Davison JE, Herzog HJ (2015) The cost of CO2 capture and storage. Int J Greenh Gas Control 40:378–400. https://doi.org/10.1016/j.ijggc.2015.05.018

    Article  Google Scholar 

  8. Buttler A, Spliethoff H (2018) Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renew Sustain Energy Rev 82:2440–2454. https://doi.org/10.1016/j.rser.2017.09.003

    Article  Google Scholar 

  9. Philibert C (2017) Renewable energy for industry

    Google Scholar 

  10. Wiser R, Bolinger M (2018) 2016 Wind technologies market report

    Google Scholar 

  11. Edwards R, Padella M, O’Connell A (2017) Discussion document

    Google Scholar 

  12. Siegemund S (2017) The potential of electricity-based fuels for low-emission transport in the EU

    Google Scholar 

  13. Nichols RJ (2003) The methanol story: a sustainable fuel for the future. J Sci Ind Res (India) 62:97–105

    Google Scholar 

  14. Pearson RJ, Turner JWG, Peck AJ (2009) Gasoline-ethanol-methanol tri-fuel vehicle development and its role in expediting sustainable organic fuels for transport. In: IMechE Conf Low Carbon Veh 2009, Inst Mech Eng London, 20–21 May 2009

    Google Scholar 

  15. Bromberg L, Cedrone K, Cohn DR (2013) Ultra-high efficiency methanol engines with advanced exhaust energy recovery efficient engines & efficient alternative liquid fuels

    Google Scholar 

  16. Çelik MB, Özdalyan B, Alkan F (2011) The use of pure methanol as fuel at high compression ratio in a single cylinder gasoline engine. Fuel 90:1591–1598. https://doi.org/10.1016/j.fuel.2010.10.035

    Article  Google Scholar 

  17. Vancoillie J, Demuynck J, Sileghem L et al (2012) Comparison of the renewable transportation fuels, hydrogen and methanol formed from hydrogen, with gasoline – engine efficiency study. Int J Hydrogen Energy 37:9914–9924. https://doi.org/10.1016/j.ijhydene.2012.03.145

    Article  Google Scholar 

  18. Vancoillie J, Demuynck J, Sileghem L et al (2013) The potential of methanol as a fuel for flex-fuel and dedicated spark-ignition engines. Appl Energy 102:140–149. https://doi.org/10.1016/j.apenergy.2012.05.065

    Article  Google Scholar 

  19. IMO (2016) Methanol as marine fuel: environmenal benefits, technology readiness and economic feasibility

    Google Scholar 

  20. Maus W, Jacob E, Hirth P, Maus W, Brück R, Jacob E, Hirth P, Jäger W

    Google Scholar 

  21. Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461:14–31. https://doi.org/10.1016/s0022-0728(98)00197-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Stefansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stefansson, B., Sigurbjörnsson, Ó. (2019). Sustainable Fuel from CO2 and Electricity: A Commercial Scale Solution Ready to Meet Future Challenges. In: Maus, W. (eds) Zukünftige Kraftstoffe. ATZ/MTZ-Fachbuch. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58006-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58006-6_20

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58005-9

  • Online ISBN: 978-3-662-58006-6

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics