Skip to main content

CO2 Capture from Air: A Breakthrough Sustainable Carbon Source for Synthetic Fuels

  • Chapter
  • First Online:
Zukünftige Kraftstoffe

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

Abstract

For the production of carbon-neutral synthetic hydrocarbon fuels, CO2 is a critical raw material for which a variety of sources exist. Today, industrial ammonia production is amongst the most common sources for CO2 since the gas is generated as a by-product in a highly concentrated form. Further industrial sources of CO2 include coal and gas-fired power plants, as well as steel and cement production. As only high purity CO2 can be used for the production of synthetic fuels, industrial sites need to be equipped with dedicated carbon capture technology. What’s more, such industrial CO2 sources do not allow for the recapturing of CO2 from the atmosphere once the synthetic fuels are consumed in the transportation sector. This means the carbon cycle cannot be closed using this method. A viable alternative for sourcing CO2 is highly concentrated, high purity CO2 captured directly from the atmosphere through a process called direct air capture (DAC). Of all possible CO2 sources, only biogenic sources and direct air capture allow for the carbon cycle to be sustainably closed and thus reach truly climate-neutral transportation with internal combustion engines. A further advantage of CO2 captured from air is that food security is neither interfered with nor put at risk. As such, direct air capture is considered one of the most feasible and promising CO2 sources for the production of synthetic fuels [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Escobar J et al (2009) Biofuels: environment, technology and food security. Renew Sustain Energy Rev 13(6–7):1275–1287

    Article  Google Scholar 

  2. Naylor R et al (2010) The Ripple effect. Environ Sci Policy Sustain Dev

    Google Scholar 

  3. Graves C et al (2011) Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew Sustain Energy Rev 15(1):1–23

    Article  MathSciNet  Google Scholar 

  4. Wadham P (2018) The Washington Post. Saving the world with carbon dioxide removal. https://www.washingtonpost.com/news/theworldpost/wp/2018/01/08/carbon-emissions/?noredirect=on&utm_term=.2d5963aaca5a. Accessed 16 Apr 2018

  5. Gebald C et al (2014) Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose. Environ Sci Technol 48:2497–2504

    Article  Google Scholar 

  6. Gebald C et al (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108

    Article  Google Scholar 

  7. Gebald C et al (2013) Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO2 capture from air. Environ Sci Technol 47:10063–10070

    Article  Google Scholar 

  8. Wurzbacher JA, Gebald C, Steinfeld A (2011) Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel. Energy Environ Sci 4:3584–3592

    Article  Google Scholar 

  9. Wurzbacher JA et al (2016) Heat and mass transfer of temperature-vacuum swing desorption for CO2 capture from air. Chem Eng J. 283:1329–1338

    Article  Google Scholar 

  10. Wurzbacher JA et al (2012) Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle. Environ Sci Technol 46:9191–9198

    Article  Google Scholar 

  11. IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva

    Google Scholar 

  12. Mercator Research Institute on Global Commons and Climate Change (2018) The challenges of limiting climate change to 1.5 °C. https://www.mcc-berlin.net/aktuell/article/the-challenges-of-limiting-climate-change-to-15c.html. Accessed 16 Apr 2018

  13. Fiala K Forbes. https://www.forbes.at/artikel/climeworks-ab-an-die-frische-luft.html

  14. Bala S (2010) CEH marketing research report carbon dioxide. Chemical Economics Handbook

    Google Scholar 

  15. Schneeberger H Migros Magazin. https://www.migrosmagazin.ch/die-erfinder-des-co2-saugers

  16. High-Level Commission on Carbon Prices. Carbon pricing leadership coalition. https://static1.squarespace.com/static/54ff9c5ce4b0a53decccfb4c/t/59b7f2409f8dce5316811916/1505227332748/CarbonPricing_FullReport.pdf

  17. Hochschule für Technik Rapperswil (2015) HSR eröffnet schweizweit erste „Power-to-Methane“ –A nlage zur Produktion von vollständig erneuerbarem Treibstoff. Rapperswil

    Google Scholar 

  18. Sunfire First commercial plant for the production of blue crude planned in Norway. http://www.sunfire.de/en/company/press/detail/first-commercial-plant-for-the-production-of-blue-crude-planned-in-norway. Accessed 06 Feb 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Gutknecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gutknecht, V., Charles, L. (2019). CO2 Capture from Air: A Breakthrough Sustainable Carbon Source for Synthetic Fuels. In: Maus, W. (eds) Zukünftige Kraftstoffe. ATZ/MTZ-Fachbuch. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58006-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58006-6_10

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58005-9

  • Online ISBN: 978-3-662-58006-6

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics