Skip to main content

Reconfiguration Assistance for Cyber-Physical Production Systems

  • Conference paper
  • First Online:

Zusammenfassung

In order to overcome today´s challenges of increasing customer requirements, new methods for efficient and customized manufacturing processes have to be developed. This paper presents an approach for the reconfiguration of cyber-physical production systems (CPPS). The concept is based on state-of-theart virtual plant representations and mapping approaches. First, a suitable virtual plant representation has to be created and overall CPPS capabilities have to be determined. Then the CPPS capabilities need to be mapped with production requirements in order to identify CPPS adaptation needs. In case of necessary reconfigurations, the concept also provides a selection guide in terms of suitable best practices. The concept is applied to a human-robot interactive assembly process. The validation results prove the functionality and high practical relevance of the CPPS reconfiguration assistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Deuse J, Weisner K, Hengstebeck A, Busch F (2014) Gestaltung von Produktionssystemen im Kontext von Industrie 4.0. In: Botthof A, Hartmann EA (eds) Zukunft der Arbeit in Industrie 4.0. Springer Vieweg, Berlin, Germany, pp 43-49.

    Google Scholar 

  2. Barthelmey A, Lenkenhoff K, Schallow J, Lemmerz K, Deuse J, Kuhlenkötter B (2016) Technical Documentation as a Service – An Approach for Integrating Editorial and Engineering Processes of Machinery and Plant Engineers. Procedia CIRP 52:167-172.

    Google Scholar 

  3. Uhlemann TH-J, Lehmann C, Steinhilper R (2017) The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0. Procedia CIRP 61:335-340.

    Google Scholar 

  4. Schuh G, Anderl R, Gausemeier J, Hompel M ten, Wahlster W (eds) (2017) Industrie 4.0 Maturity Index: Managing the Digital Transformation of Companies. acatech STUDIE. Utz, Herbert, München.

    Google Scholar 

  5. Boschert S, Rosen R (2016) Digital Twin—The Simulation Aspect. In: Hehenberger P, Bradley D (eds) Mechatronic Futures. Springer International Publishing, Cham, pp 59-74.

    Google Scholar 

  6. Strauß, P and Barthelmey, André and Deuse, J (2017) Cyber-physical systems for predictive maintenance. Productivity 2017:12–15.

    Google Scholar 

  7. ISO/AWI 16400: Interoperability, integration, and architectures for enterprise systems and automation applications.

    Google Scholar 

  8. IEC 62714: Engineering data exchange format for use in industrial automation systems engineering - Automation markup language.

    Google Scholar 

  9. IEC TR 62541 IEC TR 62541 OPC unified architecture.

    Google Scholar 

  10. Matsuda M, Kimura F (2015) Usage of a digital eco-factory for sustainable manufacturing. CIRP Journal of Manufacturing Science and Technology 9:97-106.

    Google Scholar 

  11. Drath R (ed) (2010) Datenaustausch in der Anlagenplanung mit AutomationML: Integration von CAEX, PLCopen XML und COLLADA. VDI-Buch. Springer, Berlin, Heidelberg.

    Google Scholar 

  12. Henßen R, Schleipen M (2014) Interoperability between OPC UA and AutomationML. Procedia CIRP 25:297-304.

    Google Scholar 

  13. Lenkenhoff K, Barthelmey A, Lemmerz K, Kuhlenkötter B, Deuse J (2016) Communication Architecture for Automatic Plant Documentation Updates. Procedia CIRP 44:365-370.

    Google Scholar 

  14. Fitts PM (1951) Human engineering for an effective air navigation and traffic control system. National Research Council, Washington, DC.

    Google Scholar 

  15. de Winter, J. C. F., Dodou D (2014) Why the Fitts list has persisted throughout the history of function allocation. Cognition, Technology & Work 16:1-11.

    Google Scholar 

  16. Dekker S, Woods DD (2002) MABA-MABA or Abracadabra? Progress on Human-Automation Co-ordination. Congition, Technology & Work 4:240-244.

    Google Scholar 

  17. Parasuraman R, Sheridan TB, Wickens CD (2000) A model for Types and Levels of Human Interaction with Automation. IEEE Transactions on Systems, Man and Cybernetics 30:286-297.

    Google Scholar 

  18. Miller CA, Parasuraman R (2003) Beyond Levels of Automation: An architecture for more flexible human-automation collaboration. In: Proceedings of the Human Factors and Ergonomics Society 47th Annual Meeting. SAGE, pp 182-186.

    Google Scholar 

  19. Beumelburg K (2005) Fähigkeitsorientierte Montageablaufplanung in der direkten Mensch-Roboter-Kooperation. Jost-Jetter, Heimsheim.

    Google Scholar 

  20. Bick W (1992) Systematische Planung hybrider Montagesysteme unter besonderer Berücksichtigung der Ermittlung des optimalen Automatisierungsgrades. Springer, München.

    Google Scholar 

  21. Westkämper E, Spingler JC, Beumelburg K (2003) Skill Oriented planning of Semi Automated Assembly Systems. In: Proceedings of the 8th IFAC Symposium on Automated Systems Based on Human Skill and Knowledge. Elsevier, pp 111-116.

    Google Scholar 

  22. Wantia N, Esen M, Hengstebeck A, Heinze F, Roßmann J, Deuse J, Kuhlenkötter B (2016) Task planning for human robot interactive processes. In: IEEE (ed) Proceedings of the 21st IEEE International Conference on Emerging Technologies and Factory Automation (ETFA).

    Google Scholar 

  23. Nöhring F, Wienzek T, Wöstmann R, Deuse J (2016) Industrie 4.0 in nicht F&E-intensiven Unternehmen: Entwicklung einer sozio-technischen Gestaltungs- und Einführungssystematik. Zeitschrift für wirtschaftlichen Fabrikbetrieb 111:376-379.

    Google Scholar 

  24. Weisner K, Knittel M, Enderlein H, Wischniewski S, Jaitner T, Kuhlang P, Deuse J (2016) Assistenzsystem zur Individualisierung der Arbeitsgestaltung: Einsatz von Smart Devices zur kontextsensitiven Arbeitsunterstützung. Zeitschrift für wirtschaftlichen Fabrikbetrieb 111:598-601.

    Google Scholar 

  25. Landau K, Wimmer R, Luczak H, Mainzer J, Peters H, Winter G (2001) Anforderungen an Montagearbeitsplätze. In: Landau K, Luczak H (eds) Ergonomie und Organisation in der Montage. Hanser, München, pp 1-82.

    Google Scholar 

  26. Bauer W, Bender M, Braun M, Rally P, Scholtz O (2016) Leichtbauroboter in der manuellen Montage - einfach einfach anfangen. IRB Mediendienstleistungen, Stuttgart.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Hengstebeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hengstebeck, A., Barthelmey, A., Deuse, J. (2018). Reconfiguration Assistance for Cyber-Physical Production Systems. In: Schüppstuhl, T., Tracht, K., Franke, J. (eds) Tagungsband des 3. Kongresses Montage Handhabung Industrieroboter. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56714-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56714-2_20

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56713-5

  • Online ISBN: 978-3-662-56714-2

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics