Skip to main content

Non-carbon Support Materials Used in Low-Temperature Fuel Cells

  • Chapter
  • First Online:

Abstract

To improve electrochemical performance of the fuel cell devices, various nanoscaled materials were produced using different methods such as colloidal chemistry, physical deposition, pyrolysis, and solid-state chemistry. Series of materials such as Pt-catalytic support materials are described and include doped metal oxides, carbides, nitrides, borides, mesoporous silica, metal, and conducting polymer-based support materials for Pt class of electrocatalysts. In this chapter, we summarized the recent developments in the advanced synthesis of electrodes for low-temperature fuel cells, cathode, and anode catalyst for proton exchange membrane fuel cells (PEMFCs). The structures of these materials were highly diversified, including core-shell, hybrid catalytic materials, and skinned-shell structures. We also discuss tolerance to acidic media and CO of catalysts supported by metal and mixed metal oxide nanocatalysts with mesoporous, hollow, or multilayered structures. Their representative catalytic applications in the fuel cell devices particularly in oxygen reduction reaction (ORR), hydrogen oxidation reactions (HOR), and methanol oxidation reaction (MOR) are discussed. We highlighted perspectives for their challenges ahead and opportunities for their use in low-temperature fuel cells and PEMFCs. Based on the structural characterization and performance of the devices, we further listed the ideal support material characteristics to enhance the stability and durability of these carbon-based and non-carbon-based support materials for Pt and non-Pt nanocatalysts used in low-temperature fuel cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)

    Article  CAS  Google Scholar 

  2. B.C.H. Steele, A. Heinzel, Materials for fuel cell technologies. Nature 414, 345–352 (2001)

    Article  CAS  Google Scholar 

  3. L.M. Roen, C.H. Paik, T.D. Jarvi, Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem. Solid-State Lett. 7(1), A19–A22 (2004)

    Article  CAS  Google Scholar 

  4. P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A 253(2), 337–358 (2003)

    Article  CAS  Google Scholar 

  5. S.D. Knights, K.M. Colbow, J. St-Pierre, D.P. Wilkinson, Aging mechanisms and a lifetime of PEFC and DMFC. J. Power Sources 127(1–2), 127–134 (2004)

    Article  CAS  Google Scholar 

  6. F.C. Walsh, R.G.A. Wills, The continuing development of Magnéli phase titanium sub-oxide and Ebonex® electrodes. Electrochim. Acta 55, 6342–6351 (2010)

    Article  CAS  Google Scholar 

  7. S. Andersson, B. Collen, U. Kuylenstierna, A. Magnéli, Phase analysis studies on the titanium-oxygen system. Acta Chem. Scand. 11, 1641–1652 (1957)

    Article  CAS  Google Scholar 

  8. M. Marezio, D.B. McWhan, P.D. Demier, J.P. Remeika, Structural aspects of the metal-insulator transitions in Ti4O7. J. Solid State Chem. 6(2), 213–221 (1973)

    Article  CAS  Google Scholar 

  9. J.E. Graves, D. Pletcher, R.L. Clarke, F.C. Walsh, The electrochemistry of Magnéli phase titanium oxide ceramic electrodes Part I. The deposition and properties of the metal coating. J. Appl. Electrochem. 21(10), 848–857 (1991)

    Article  CAS  Google Scholar 

  10. L.M. Vracar, N.V. Krstajic, V.R. Radmilovic, M.M. Jaksic, Electrocatalysis by nanoparticles-oxygen reduction on Ebonex/Pt electrode. J. Electroanal. Chem. 587(1), 99–107 (2005)

    Article  Google Scholar 

  11. L. Wang, P. Lettenmeier, U. Golla-Schindler, P. Gazdzicki, N.A. Canas, T. Morawietz, R. Hiesgen, S.S. Hosseiny, A.S. Gago, K.A. Friedrich, Nanostructured Ir-supported on Ti4O7 as a cost effective anode for proton exchange membrane (PEM) electrolyzers. Phys. Chem. Chem. Phys. 18(6), 4487–4495 (2016)

    Article  CAS  Google Scholar 

  12. T. Ioroi, H. Senoh, S. Yamazaki, Z. Siroma, N. Fujiwara, K. Yasuda, Stability of corrosion-resistant Magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials. J. Electrochem. Soc. 155(4), B321–B326 (2008)

    Article  CAS  Google Scholar 

  13. S.J. Tauster, S.C. Fung, R.T.K. Baker, J.A. Horsley, Strong interactions in support-metal catalysts. Science 211(4487), 1121–1125 (1981)

    Article  CAS  Google Scholar 

  14. E.E. Farndon, D. Pletcher, A. Saraby-Reintjes, The electrodeposition of platinum onto a conducting ceramic Ebonex. Electrochim. Acta 42(8), 1269–1279 (1997)

    Article  CAS  Google Scholar 

  15. E. Slavcheva, V. Nikolova, T. Petkova, E. Lefterova, I. Dragieva, T. Vitanov, E. Budevski, Electrocatalytic activity of Pt and Pt-Co deposited on Ebonex by BH reduction. Electrochim. Acta 50(27), 5444–5448 (2005)

    Article  CAS  Google Scholar 

  16. G.Y. Chen, S.R. Bare, T.E. Mallouk, Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J. Electrochem. Soc. 149(8), A1092–A1099 (2002)

    Article  CAS  Google Scholar 

  17. C.H. Yao, F. Li, X. Li, D.G. Xia, Fiber-like nanostructured Ti4O7 used as durable fuel cell catalyst support in oxygen reduction catalysis. J. Mater. Chem. 22(32), 16560–16565 (2012)

    Article  CAS  Google Scholar 

  18. P.K. Shen, C.Y. He, S.Y. Chang, X.D. Huang, Z.Q. Tian, Magnéli phase Ti8O15 nanowires as conductive carbon-free energy materials to enhance the electrochemical activity of palladium nanoparticles for direct ethanol oxidation. J. Mater. Chem. A 3, 14416–14423 (2015)

    Article  CAS  Google Scholar 

  19. L. Chen, A.C. Cooper, G.P. Pez, H.S. Cheng, On the mechanisms of hydrogen spillover in MoO3. J. Phys. Chem. C 112(6), 1755–1758 (2008)

    Article  CAS  Google Scholar 

  20. N.R. Elezovic, B.M. Babic, V.R. Radmilovic, L.M. Vracar, N.V. Krstajjc, Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction. Electrochim. Acta 54(9), 2404–2409 (2009)

    Article  CAS  Google Scholar 

  21. Y. Wang, E.R. Fachini, G. Cruz, Y.M. Zhu, Y. Ishikawa, J.A. Colucci, C.R. Cabrera, Effect of surface composition of electrochemically deposited platinum/molybdenum oxide on methanol oxidation. J. Electrochem. Soc. 148(3), C222–C226 (2001)

    Article  CAS  Google Scholar 

  22. T. Ioroi, T. Akita, S. Yamazaki, Z. Siroma, N. Fujiwara, K. Yasuda, Comparative study of carbon-supported Pt/Mo-oxide and PtRu for use as Co-tolerant anode catalysts. Electrochim. Acta 52(2), 491–498 (2006)

    Article  CAS  Google Scholar 

  23. M. Koyano, A. Miyata, H. Hara, Anisotropic behavior of electrical conductivity and collective motion of charge density wave in quasi-two-dimensional conductor g-Mo4O11. Phys. B Condens. Matter 284-248, 1663–1664 (2000)

    Article  Google Scholar 

  24. T. Sato, T. Dobashi, H. Komatsu, T. Takahashi, M. Koyano, Electronic structure of η-Mo4O11 studied by high-resolution angle-resolved photoemission spectroscopy. J. Electron Spectrosc. Relat. Phenom. 144-147, 549–552 (2005)

    Article  CAS  Google Scholar 

  25. M.S. da Luz, A. de Campos, B.D. White, J.J. Neumeier, Electrical resistivity, high-resolution thermal expansion, and heat capacity measurements of the charge-density-wave compound gamma-Mo4O11. Phys. Rev. B 79, 233106-1–233106-4 (2009)

    Google Scholar 

  26. F. Yang, F. Li, Y. Wang, X. Chen, D.G. Xia, J.B. Liu, Enhanced electrocatalytic performance for methanol oxidation with a Magnéli phase molybdenum oxide/Pt-black composite. J. Mol. Catal. A Chem. 400, 7–13 (2015)

    Article  CAS  Google Scholar 

  27. R. Xu, F. Xu, M. Pan, M. SC, Improving sulfur tolerance of noble metal catalysts by tungsten oxide-induced effects. RSC Adv. 3, 764–773 (2013)

    Article  CAS  Google Scholar 

  28. F. Li, H.Y. Gong, Y. Wang, H. Zhang, Y.Z. Wang, S.N. Liu, S. Wang, C.W. Sun, Enhanced activity, durability and anti-poisoning property of Pt/W18O49 for methanol oxidation with a substoichiometric tungsten oxide W18O49 support. J. Mater. Chem. A 2, 20154–20163 (2014)

    Article  CAS  Google Scholar 

  29. L. YZ, Y.Y. Jiang, X.H. Gao, X.D. Wang, W. Chen, Strongly coupled Pd nano tetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 136(33), 11687–11697 (2014)

    Article  Google Scholar 

  30. X.B. Zhu, H.M. Zhang, Y.M. Liang, Y. Zhang, B.L. Yi, A novel PTFE-reinforced multilayer self-humidifying composite membrane for PEM fuel cell. Electrochem. Solid-State Lett. 9(2), A49–A52 (2006)

    Article  CAS  Google Scholar 

  31. Z.G. Chen, X.P. Qiu, B. Lu, S.C. Zhang, W.T. Zhu, L.Q. Chen, Synthesis of hydrous ruthenium oxide-supported platinum catalysts for direct methanol fuel cells. Electrochem. Commun. 7(6), 593–596 (2005)

    Article  CAS  Google Scholar 

  32. K. Park, K. Seol, Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochem. Commun. 9(9), 2256–2260 (2007)

    Article  CAS  Google Scholar 

  33. O.E. Hass, S.T. Briskeby, O.E. Kongstein, M. Tsypkin, R. Tunold, B.T. Boerresen, Synthesis and characterization of RuxTi1-xO2 as a catalyst support for the polymer electrolyte fuel cell. J. New Mater. Electrochem. Syst. 11(1), 9–14 (2008)

    Google Scholar 

  34. A.P. Wang, X. HB, L. YH, H. JZ, X.F. Kong, B.L. Tian, H. Dong, Synthesis and characterization of ruthenium-titanium composite oxide and a platinum catalyst supported on it. Chin. J. Catal. 30(3), 179–181 (2009)

    Article  Google Scholar 

  35. V. Ho, C.J. Pan, J. Rick, S. WN, B.J. Hwang, Nanostructured Ti0.7Mo0.3O2 supported enhances electron transfer to Pt: high-performance catalysts for oxygen reduction reaction. J. Am. Chem. Soc. 133(30), 11716–11724 (2011)

    Article  CAS  Google Scholar 

  36. P. Yu, M. Pemberton, P. Plasse, Pt-Co/C cathode catalyst for improved durability in PEMFCs. J. Power Source 144(1), 11–20 (2005)

    Article  CAS  Google Scholar 

  37. J.H. Kim, G. Kwon, H. Lim, C. Zhu, H. You, Y.T. Kim, Effects of transition metal doping in Pt/M-TiO2 (M=V, Cr, Nb) on oxygen reduction reaction activity. J. Power Sources 320, 188–195 (2016)

    Article  CAS  Google Scholar 

  38. T. Saraidarov, R. Reisfeld, E. Zigansky, A. Sashchiuk, E. Lifshitz, Electrical conductivity of doped porous glasses as possible sensors for oxygen. Opt. Appl. 38(1), 109–117 (2008)

    CAS  Google Scholar 

  39. A.L. Santos, D. Profeti, P. Olivi, Electrooxidation of methanol on Pt microparticles dispersed on SnO2 thin films. Electrochim. Acta 50(13), 2615–2621 (2005)

    Article  CAS  Google Scholar 

  40. K.S. Lee, I.S. Park, Y.H. Cho, D.S. Jung, N. Jung, H.Y. Park, Y.E. Sung, Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. J. Catal. 258(1), 143–152 (2008)

    Article  CAS  Google Scholar 

  41. H.L. Pang, X.H. Zhang, X.X. Zhong, B. Liu, X.G. Wei, Y.F. Kuang, J.H. Chen, Preparation of Ru-doped SnO2-supported Pt catalysts and their electrocatalytic properties for methanol oxidation. J. Colloid Interface Sci. 319(1), 193–198 (2008)

    Article  CAS  Google Scholar 

  42. Y. Liu, W.E. Mustain, High stability, high activity Pt/ITO oxygen reduction electrocatalysts. J. Am. Chem. Soc. 135(2), 530–533 (2013)

    Article  CAS  Google Scholar 

  43. S. Hara, M. Miyayama, Proton conductivity of super acidic sulfated zirconia. Solid State Ionics 168(1–2), 111–116 (2004)

    Article  CAS  Google Scholar 

  44. Y.C. Suzuki, A. Ishihara, S. Mitsushima, N. Kamiya, K. Ota, Sulfated-zirconia as a support of Pt catalyst for polymer electrolyte fuel cells. Electrochem. Solid-State Lett. 10(7), B105–B107 (2007)

    Article  CAS  Google Scholar 

  45. V. Jalan, D.G. Frost, U.S. Patent 4,795,684 1989

    Google Scholar 

  46. E.C. Weigert, S. Arisetty, S.G. Advani, A.K. Prasad, J.G. Chen, Electrochemical evaluation of tungsten monocarbide (WC) and platinum-modified WC as alternative DMFC electrocatalysts. J. New Mater. Electrochem. Syst. 11, 243–251 (2008)

    CAS  Google Scholar 

  47. Y. Wang, S.Q. Song, V. Maragou, P.K. Shen, P. Tsiakaras, High surface area tungsten carbide microsphere as effective Pt catalyst support for oxygen reduction reaction. Appl Catal B 89(1–2), 223–228 (2009)

    CAS  Google Scholar 

  48. Y. Hara, N. Minami, H. Matsumoto, H. Itagaki, New synthesis of tungsten carbide particles and synergistic effect with Pt metal as a hydrogen oxidation catalyst for fuel cell applications. Appl. Catal. A 332(2), 289–296 (2007)

    Article  CAS  Google Scholar 

  49. J. Lobato, H. Zamora, J. Plaza, P. Canizares, M.A. Rodrigo, Enhancement of high-temperature PEMFC stability using catalysts based on Pt supported on SiC-based materials. Appl. Catal. B Environ. 198, 516–524 (2016)

    Article  CAS  Google Scholar 

  50. R. Dhiman, E. Johnson, E.M. Skou, P. Morgen, S.M. Andersen, SiC nanocrystals as Pt catalyst supports for fuel cell applications. J. Mater. Chem. A 1, 6030–6036 (2013)

    Article  CAS  Google Scholar 

  51. B. Avasarala, T. Murray, W.Z. Li, P. Haldar, Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells. J. Mater. Chem. 19, 1803–1805 (2009)

    Article  CAS  Google Scholar 

  52. J.A. Perdigon-Melon, A. Auroux, C. Guimon, B. Bonnetot, Micrometric BN powders used as catalyst support: influence of the precursor on the properties of BN ceramic. J. Solid State Chem. 177(2), 609–615 (2004)

    Article  CAS  Google Scholar 

  53. S.B. Yin, S.C. Mu, H.F. Lv, N.C. Cheng, M. Pan, Z.Y. Fu, A highly stable catalyst for PEM fuel cell based on durable titanium diboride support and polymer stabilization. Appl Catal B 93(3–4), 233–240 (2010)

    Article  CAS  Google Scholar 

  54. I. Eswaramoorthi, A.K. Dalai, A comparative study on the performance of mesoporous SBA-15 supported Pd-Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production. Int. J. Hydrog. Energy 34(6), 2580–2590 (2009)

    Article  CAS  Google Scholar 

  55. K. Sasaki, Y. Mo, J.X. Wang, M. Balasubramanian, F. Uribe, J. Mcbreen, R.R. Adzic, Pt submonolayers on metal nanoparticles-novel Electrocatalysts for H2 oxidation and O2 reduction. Electrochem. Acta 48(25–26), 3841–3849 (2003)

    Article  CAS  Google Scholar 

  56. J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki, R.R. Adzic, Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 108(30), 10955–10964 (2004)

    Article  CAS  Google Scholar 

  57. V. Stamenkovic, T.J. Schmidt, P.N. Ross, N.M. Markovic, Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106(46), 11970–11979 (2002)

    Article  CAS  Google Scholar 

  58. V.R. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128(27), 8813–8819 (2006)

    Article  CAS  Google Scholar 

  59. H. Laborde, J.M. Leger, C. Lamy, Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes Part1: platinum in polyaniline. J. Appl. Electrochem. 24(3), 219–226 (1994)

    Article  CAS  Google Scholar 

  60. B. Rajesh, K.R. Thampi, J.M. Bonard, H.J. Mathieu, N. Xanthopoulos, B. Viswanathan, Nanostructured conducting polyaniline tubules as catalyst support for Pt particles for possible fuel cell applications. Electrochem. Solid-State Lett. 7(11), A404–A407 (2004)

    Article  CAS  Google Scholar 

  61. H.B. Zhao, L. Li, J. Yang, Y.M. Zhang, Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications. J. Power Sources 184(2), 375–380 (2008)

    Article  CAS  Google Scholar 

  62. V. Selvaraj, M. Alagar, Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem. Commun. 9(5), 1145–1153 (2007)

    Article  CAS  Google Scholar 

  63. H.B. Zhao, L. Li, J. Yang, Y.M. Zhang, H. Li, Synthesis and characterization of bimetallic Pt-Fe/polypyrrole-carbon catalyst as DMFC anode catalyst. Electrochem. Commun. 10(6), 876–879 (2008)

    Article  CAS  Google Scholar 

  64. H.B. Zhao, J. Yang, L. Li, H. Li, J.L. Wang, Y.M. Zhang, Effect of over-oxidation treatment of Pt-Co/polypyrrole-carbon nanotube catalysts on methanol oxidation. Int. J. Hydrog. Energy 34(9), 3908–3914 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would express thanks to Dr. Gong Hongyu and Ms. Zheng Xiangjun for their kindly help and to the National Nature Science Foundation of China (51572181, 51472009, 51172007) and Natural Science Foundation of Jiangsu Province, China (BK20151226), for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruizhi Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cao, X., Li, F., Yang, R. (2018). Non-carbon Support Materials Used in Low-Temperature Fuel Cells. In: Li, F., Bashir, S., Liu, J. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56364-9_5

Download citation

Publish with us

Policies and ethics