Skip to main content

Vergasung fester und flüssiger Brennstoffe

  • Chapter
  • First Online:
Stationäre Gasturbinen

Part of the book series: VDI-Buch ((VDI-BUCH))

  • 9928 Accesses

Zusammenfassung

Gasturbinen werden bis heute noch fast ausschließlich zur Verstromung von Erdgas oder Heizöl eingesetzt. Die Vorschaltung einer Vergasungsanlage ermöglicht auch die Nutzung von festen oder flüssigen Brennstoffen wie Kohle oder Raffinerierückständen, die sonst nicht direkt in einer Gasturbine bzw. GuD-Anlagemit hohem Wirkungsgrad umgesetzt werden könnten. Diese Kopplung aus Vergasungsanlage mit nachgeschalteter Gasreinigung und anschließender Nutzung des gereinigten Synthesegases (Syngas) in einer GuD-Anlage wird als IGCC-Kraftwerk (IGCC = Integrated Gasification Combined Cycle) bezeichnet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Farina L et al. (1999) ISAB IGCC plant enters operation phase. Modern Power Systems, August, 49–51

    Google Scholar 

  2. Hannemann F et al. (2003) Pushing Forward IGCC Technology at Siemens. Gasification Technologies Conference, San Francisco, California

    Google Scholar 

  3. Huth M et al. (1998) Verbrennung von Synthesegas in Gasturbinen. Brennstoff-Wärme-Kraft 50, 9:35–39

    Google Scholar 

  4. Huth M et al. (2000) Operation Experiences of Siemens IGCC Gas Turbines Using Gasification Products from Coal and Refinery Residues, Paper 2000-GT-26. ASME Turbo Expo 2000, Munich, May

    Google Scholar 

  5. Pruschek R et al. (1997) Kohlekraftwerke der Zukunft, Teil 1 und Teil 2. Brennstoff-Wärme-Kraft 9/10, 11/12

    Google Scholar 

  6. Zon GD, Winter HMJde (1998) Recent operation Experience at Buggenum IGCC. EPRI/GTC Gasification Technologies Conference, San Francisco, California, October 4–7

    Google Scholar 

  7. Scherer V et al. (1994) The ABB type GT13E2 Gas Turbine and its conversion to Mbtu Syngas Firing for Gasification Projects. 1st International conference on combined cycle power generation, Calcutta, India, January 6–8

    Google Scholar 

  8. Harasgama P, Reyser K, Griffin T (1997) The GT13E2 Medium BTU Gas Turbine. Gasification Technology in Practice, Milan, February

    Google Scholar 

  9. Del Bravo R et al. (1998) Api Energia IGCC Plant is Fully Integrated with Refinery, June, MPS (Modern Power Systems)

    Google Scholar 

  10. Del Bravo R, Reyser K (1999) Preliminary Results of Testing and Commissioning – Api Energia 276 MW IGCC Plant in Italy. Power-Gen Europe

    Google Scholar 

  11. Cerbe G (2008) Grundlagen der Gastechnik, 7. Aufl. Hanser, München Wien, Abschn. 2.2.4

    Google Scholar 

  12. Warnatz J, Maas U, Dibble RW (2001) Technische Verbrennung, 3. Aufl. Springer, Berlin Heidelberg New York, Abschn. 8.1

    Google Scholar 

  13. Hoffmann S (1994) Untersuchungen des Stabilisierungsverhaltens und der Stabilitätsgrenzen von Drallflammen mit innerer Rückströmzone. Dissertation, Universität Karlsruhe (TH), Abschn. 2.4

    Google Scholar 

  14. Rudolf Günther R (1984) Verbrennung und Feuerungen. Springer, Berlin Heidelberg New York, Abschn. 4.3.6.1

    Google Scholar 

  15. Gadde S et al. (2006) Syngas Capable Combustion Systems Development for Advanced Gas Turbines, Paper GT2006-90970, Proceedings of ASME Turbo Expo 2006, May 8–11, Barcelona, Spain

    Google Scholar 

  16. Wu J et al. (2007) Advanced Gas Turbine Combustion System Development for High Hydrogen Fuels, GT 2007–28337, Proceedings of ASME Turbo Expo 2007, May 14–17, Montreal, Canada

    Google Scholar 

  17. Xia J, Gadde S, McQuiggan G (2006) Advanced F-Class Gas Turbines Can be a Reliable Choice for IGCC Applications. Electric Power Conference, Atlanta, Georgia

    Google Scholar 

  18. Robert M et al. (2006) Expanding Combustion Capabilities for Syngas Fuel Flexibility. POWER-GEN International, Orlando, Florida

    Google Scholar 

  19. Hashimoto T, Ota K, Fujii T (2007) Progress Update for Commercial Plants of Air Blown IGCC. Paper GT2007-28348, Proceedings of GT2007 ASME Turbo Expo 2007, May 14–17, Montreal, Canada

    Google Scholar 

  20. Battista RA, Feitelberg AS, Lacey MA (1996) Design and Performance of Low Heating Value Fuel Gas Turbine Combustors, 96-GT-531. Proceedings of ASME Turbo Expo 1996, June 10–13, Birmingham, UK

    Google Scholar 

  21. Karg J (2009) IGCC power plants with and without CCS – market requirements, developments and projects. 9th European Gasification Conference, 23–25 March, Düsseldorf, Germany

    Google Scholar 

  22. Karg J (2016) Coal to Products – Is IGCC a Viable Option for Power or Poly-Generation. World Clean Coal Conference – Poland 2016, 20–21 April, Warsaw, Poland

    Google Scholar 

  23. Mabuchi Y (2015) Global Activities for Clean Coal Technology. September 9

    Google Scholar 

  24. GE News Room (2015) GE schließt Akquisition von Alstom Power und Alstom Grid ab. November 2

    Google Scholar 

  25. GEA32045e (2015) Powering the World 2016, GE gas power systems catalog. November

    Google Scholar 

  26. Theunissen G et al. (2013) Siemens Gas Turbine Enhanced Fuel Flexibility – The Business Advantage for India & Central Asia. Power-Gen India, May 6–8, Mumbai, India

    Google Scholar 

  27. Brown P et al. (2007) Siemens Gas Turbine H\({}_{2}\) Combustion Technology for Low Carbon IGCC. 2007 Gasification Technologies Conference, October 14–17, San Francisco, California

    Google Scholar 

  28. Goldmeer J (2010) GE Syngas Turbines to Debut at IGCC Plant. Power Engineering, July 1

    Google Scholar 

  29. Goldmeer J (2013) Gas Turbine Fuel Flexibility: An Enabler for Regional Power Generation. Power-Gen International, November 12–14, Orlando, Florida

    Google Scholar 

  30. Komori T et al. (2003) Design for F-Class Blast Furnace Gas Firing 300 MW Gas Turbine Combined Cycle Plant. Paper IGTC2003 Tokyo TS-103, Proceedings of International Gas Turbine Congress 2003, November 2–7, Tokyo, Japan

    Google Scholar 

  31. Dodo S et al. (2015) Dry Low-NO\({}_{x}\) Combustion Technology for Novel Clean Coal Power Generation Aiming at Realization of a Low Carbon Society. Mitsubishi Heavy Industries Technical Review Vol. 52 No. 2, June

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Heilos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heilos, A., Hellat, J., Huth, M., Karg, J. (2019). Vergasung fester und flüssiger Brennstoffe. In: Lechner, C., Seume, J. (eds) Stationäre Gasturbinen. VDI-Buch. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56134-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56134-8_12

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56133-1

  • Online ISBN: 978-3-662-56134-8

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics