Skip to main content

DNA-Schäden: Erkennung, Reparatur und Nachweisverfahren

  • Chapter
  • First Online:
Der Experimentator Zellbiologie

Part of the book series: Experimentator ((EXPERIMENTATOR))

  • 12k Accesses

Zusammenfassung

Dieses Kapitel ist thematisch eher eng gefasst, da es sich nur mit der DNA-Struktur, der Signalübertragung der Schadenserkennung, der DNA-Reparatur und den Nachweisverfahren für unterschiedliche DNA-Schäden befasst. Der Schwerpunkt ist bewusst so gewählt, weil die Integrität des DNA-Moleküls von fundamentaler Bedeutung für das Zellüberleben ist. Idealerweise soll nur intakte DNA bei der Zellteilung an die Tochterzellen weitergegeben werden, allerdings wirken ständig schädigende chemische und physikalische Noxen auf die Erbsubstanz ein, was die Zelle dazu zwingt, sich fortwährend mit den entstandenen Schäden auseinanderzusetzen. Die Kenntnis über die Struktur des DNA-Moleküls ist von grundlegender Bedeutung für das Verständnis der zellulären Schadensantwort und der Reparaturmechanismen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. (2003) Der lange Weg der DNA –50 Jahre Doppelhelix. Pharmazie in unserer Zeit 32:395. https://onlinelibrary.wiley.com/doi/abs/10.1002/pauz.200390112

  2. Schlissel MS (2003) Regulating antigen-receptor gene assembly. Nat Rev Immunol 3:890–899

    Article  CAS  PubMed  Google Scholar 

  3. Saul RL, Ames BN (1986) Background levels of DNA damage in the population. Basic Life Sci 38:529–535

    PubMed  CAS  Google Scholar 

  4. Tice RR, Setlow RB (1985) DNA repair and replication in aging organisms and cells In: Finch EE, Schneider EL (Hrsg) Handbook of the biology of aging. Van Nostrand Reinhold, New York. ISBN 0-442-22529-6 S 173–224

    Google Scholar 

  5. Haber JE (1999) DNA recombination: the replication connection. Trends Biochem Sci 24:271–275

    Article  CAS  PubMed  Google Scholar 

  6. Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci U S A 100:12871–12876

    Google Scholar 

  7. Bernstein C, Prasad AR, Nfonsam V, Bernstein H (2013) DNA damage, DNA repair and cancer. In: Chen C (Hrsg) New research directions in DNA repair. IntechOpen Limited, London

    Google Scholar 

  8. Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC, Ames BN (1998) DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci U S A 95:288–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272:19633–19636

    Article  CAS  Google Scholar 

  10. Rolf S (2010) Strahlentherapie und Onkologie, 5. Aufl. Urban & Fischer/Elsevier, München

    Google Scholar 

  11. Breen AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Radic Biol Med 18:1033–1077

    Article  CAS  PubMed  Google Scholar 

  12. Schipler A, Iliakis G (2013) DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res 41:7589–7605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vignard J, Mirey G, Salles B (2013) Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother Oncol 108:362–369

    Article  CAS  PubMed  Google Scholar 

  14. Gu J, Lu H, Tippin B, Shimazaki N, Goodman MF, Lieber MR (2007) XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps. EMBO J 26:1010–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davis AJ, Chen DJ (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2:130–143

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    Article  CAS  PubMed  Google Scholar 

  17. Jeggo PA, Geuting V, Lobrich M (2011) The role of homologous recombination in radiation-induced double-strand break repair. Radiother Oncol 101:7–12

    Article  CAS  PubMed  Google Scholar 

  18. Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A, Meek K, Taucher-Scholz G, Lobrich M, Jeggo PA (2011) Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J 30:1079–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huertas P (2010) DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol 17:11–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mimitou EP, Symington LS (2011) DNA end resection–unraveling the tail. DNA Repair 10:344–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zimmermann M, De Lange T (2014) 53BP1: pro choice in DNA repair. Trends Cell Biol 24:108–117

    Article  CAS  PubMed  Google Scholar 

  22. Watts FZ (2016) Repair of DNA double-strand breaks in heterochromatin. Biomolecules 6: 47

    Google Scholar 

  23. Mladenov E, Kalev P, Anachkova B (2009) The complexity of double-strand break ends is a factor in the repair pathway choice. Radiat Res 171:397–404

    Article  CAS  PubMed  Google Scholar 

  24. Lisby M, Rothstein R (2004) DNA checkpoint and repair centers. Curr Opin Cell Biol 16:328–334

    Article  CAS  PubMed  Google Scholar 

  25. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  26. Olive PL, Banath JP, Durand RE (1990) Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the „comet“ assay. Radiat Res 122:86–94

    Article  CAS  PubMed  Google Scholar 

  27. Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298

    Article  CAS  PubMed  Google Scholar 

  28. Savage JRK (2000) Micronuclei: pitfalls and problems. Atlas Genet Cytogenet Oncol Haematol 4:229–233

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmitz, S., Desel, C. (2018). DNA-Schäden: Erkennung, Reparatur und Nachweisverfahren. In: Der Experimentator Zellbiologie. Experimentator. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56111-9_7

Download citation

Publish with us

Policies and ethics