Skip to main content

Lasers

  • Chapter
  • First Online:
Atoms, Molecules and Photons

Part of the book series: Graduate Texts in Physics ((GTP))

  • 7764 Accesses

Abstract

Laser is an acronym for Light Amplification by Stimulated Emission of Radiation that describes the basic physical principle of its operation. Gordon, Zeiger and Townes [1] showed for the first time in 1955 that a microwave could be amplified by \(\mathrm {NH}_{3}\) molecules on the inversion transition at \(\lambda =1.26\,\mathrm {cm}\) (Fig. 4.14) if these molecules were prepared in such a way that the upper level of the transition had a larger population than the lower one. With such inverted \(\mathrm {NH}_{3}\) molecules inside a microwave cavity, the first “maser” (microwave amplification by stimulated emission of radiation) could be operated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.P. Gordon, H.J. Zeiger, C.H. Townes, Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of \({\rm N}{\rm H}_{3}\). Phys. Rev. 95, 282 (1954)

    Article  ADS  Google Scholar 

  2. A.L. Schawlow, C.H. Townes, Infrared and optical masers. Phys. Rev. 112, 1940 (1958)

    Article  ADS  Google Scholar 

  3. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493 (1960)

    Article  ADS  Google Scholar 

  4. A. Siegmann, Lasers (Oxford University Press, Oxford, 1986)

    Google Scholar 

  5. O. Svelto, Principles of Lasers, 5th edn. (World Publication Company, 2014)

    Google Scholar 

  6. B. Hitz, J. Ewing, J. Hecht, Introduction to Laser Technology (Wiley & Sons, IEEE Press, 2012)

    Book  Google Scholar 

  7. S. Hooker, C. Webb, Laser Physics (Oxford Univ. Press, Oxford, 2010)

    Google Scholar 

  8. J. Hecht, Understanding Lasers, 3rd edn. (Wiley-IEEE Press, New Jersey, 2008)

    Book  Google Scholar 

  9. ChH Townes, How the Laser Happened (Oxford University Press, Oxford, 2001)

    MATH  Google Scholar 

  10. F. Bretenaker, N. Treps, Laser, 50 Years of Discoveries (World Sci. Publ, Singapore, 2014)

    Book  Google Scholar 

  11. N. Hodgson, H. Weber, Laser Resonators Beam Propogation. Fundamentals, Advanced Concepts and Applications, vol. 108. (Springer Series in Optical Sciences, 2004)

    Google Scholar 

  12. R. Kossowsky et al., Optical Resonators: Science and Engineering (Kluwer Academic Publishers, Dordrecht, 1998)

    Book  Google Scholar 

  13. G.D. Boyd, H. Kogelnik, Generalized confocal resonator theory. Bell Syst. Tech. J. 41, 1347 (1962)

    Article  Google Scholar 

  14. E.L. Saldin, E. Schneidmiller, M. Yunkow, The Physics of Free Electron Lasers (Springer, Heidelberg, 2000)

    Book  Google Scholar 

  15. J. Madey, Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906 (1971)

    Article  ADS  Google Scholar 

  16. P. Schmüser, M. Doohlus, Free electron lasers in the ultraviolet and X-ray regions (Springer Tracts in Mod, Phys, 2015)

    Google Scholar 

  17. K.-J. Kim, Z. Huang, R. Lindberg, Synchrotron Radiation and Free Electron Lasers (Cambridge University Press, Cambridge, 2017)

    Book  Google Scholar 

  18. E.L. Saldin, E. Schneidmiller, M. Yunkow, The Physics of Free Electron Lasers (Springer, Heidelberg, 1999)

    Google Scholar 

  19. W. Demtröder, Laser Spectroscopy, 5th edn. (Springer, Berlin, 2015)

    Google Scholar 

  20. H.P. Friend, T.N. Antonson, Principle of Free Electron Pairs (Springer, Chapman, 1992)

    Book  Google Scholar 

  21. D.L. Mills, Nonlinear Optics, 2nd edn. (Springer, Berlin, 1998)

    Book  Google Scholar 

  22. N. Bloembergen, Nonlinear Optics, 4th edn. (World Scientific, Singapore, 1996)

    Book  Google Scholar 

  23. R. Szipöcz, A. Köbazi-Kis, Theory and designs of chirped dielectric laser mirrors. Appl. Phys. B 65, 115 (1997)

    ADS  Google Scholar 

  24. C.V. Shank, R.L. Fork, R. Yen, R.W. Stolen, W.J. Tomlinson, Compression of femtosecond optical pulses. Appl. Phys. Lett. 40, 761 (1982)

    Article  ADS  Google Scholar 

  25. H.W. Schröder et al., A high power single mode CW dye ring laser. Appl. Phys. 14, 377 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Demtröder .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demtröder, W. (2018). Lasers. In: Atoms, Molecules and Photons. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55523-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55523-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55521-7

  • Online ISBN: 978-3-662-55523-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics