Skip to main content

Atmosphärische Spurengase

  • Chapter
  • First Online:
Book cover Physik unserer Umwelt: Die Atmosphäre
  • 7846 Accesses

Zusammenfassung

In diesem Kapitel wird ein Überblick über wichtige atmosphärische Spurengase, ausgewählte atmosphärische Reaktionszyklen sowie wichtige physikalisch-chemische Phänomene wie das stratosphärsiche Ozonloch oder Sommersmog gegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Anderson JG (1975) The absolute concentration of O(3P) in the earth\9s stratosphere. Geophys Res Lett 2:231–234

    Article  CAS  Google Scholar 

  • Anderson JG, Margitan JJ, Stedman DH (1977) Atomic chlorine and the chlorine monoxid radical in the stratosphere: Three in situ observations. Science 198:501–503

    Article  CAS  Google Scholar 

  • Archer D (2007) Methane hydrate stability and anthropogenic climate change. Biogeosciences 4:521–544

    Article  CAS  Google Scholar 

  • Arnold F, Knop G (1989) Stratospheric nitric acid vapour measurements in the cold arctic vortex: Implications for nitric acid condensation. Nature (London) 338:746–749

    Article  CAS  Google Scholar 

  • Bacastow RB, Keeling CD, Whorf TP (1985) Seasonal amplitude increase in atmospheric CO2 concentrations at Mauna Loa, Hawai, 1959–1982. J Geophys Res 90:10529–10540

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature (London) 329:408–414

    Article  CAS  Google Scholar 

  • Beirle S (2006) Average tropospheric NO2 distribution derived from SCIAMACHY observations. http://joseba.mpch-mainz.mpg.de/no2_nad.htm. Zugegriffen: 20. Febr. 2017

  • Boden T, Marland G, Andres R (2011) Global CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751–2008. Oak Ridge National Laboratory, U. S. Department of Energy, Carbon Dioxide Information Analysis Center, Oak Ridge, TN, USA., https://doi.org/10.3334/CDIAC/00001_V2011, http://cdiac.ornl.gov/trends/emis/overview_2008.html. Zugegriffen: 10. Nov. 2011.

  • Bojkov RD, Zerefos CS, Balis DS, Ziomas IG, Bais AF (1993) Record low total ozone during northern winters of 1992 and 1993. Geophys Res Lett 20:1351–1354

    Article  CAS  Google Scholar 

  • Borsdorff T, Tol P, Williams JE, de Laat J, aan de Brugh J, Nédélec P, Aben I, Landgraf J (2016) Carbon monoxide total columns from SCIAMACHY 2.3 µm atmospheric reflectance measurements: towards a full-mission data product (2003–2012). Atmos Meas Tech 9:227–248. https://doi.org/10.5194/amt-9-227-2016

    Article  CAS  Google Scholar 

  • Borsdorff T, aan de Brugh J, Hu H, Nédélec P, Aben I, Landgraf J (2017) Carbon monoxide column retrieval for clear-sky and cloudy atmospheres: a full-mission data set from SCIAMACHY 2.3 µm reflectance measurements. Atmos Meas Tech Discuss. https://doi.org/10.5194/amt-2016-355

  • Bradshaw J, Davis D, Grodzinsky G, Smyth S, Newell R, Sandholm S, Liu S (2000) Observed distribution of nitrogen oxides in the remote free troposphere from the NASA global tropospheric experiment programs. Rev Geophys 38:611–116

    Article  CAS  Google Scholar 

  • Broecker WS, Takahashi T, Simpson HJ, Peng TH (1979) Fate of fossil carbon dioxide and the global carbon budget. Science 206:409–418

    Article  CAS  Google Scholar 

  • Brunner D, Staehelin J, Maeder JA, Wohltmann I, Bodeker GE (2006) Variability and trends in total and vertically resolved stratospheric ozone based on the CATO ozone data set. Atmos Chem Phys 6:4985–5008. https://doi.org/10.5194/acp-6-4985-2006

    Article  CAS  Google Scholar 

  • Carslaw KS, Luo PB, Clegg SL, Peter T, Brimblecombe P, Crutzen PJ (1994) Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles. Geophys Res Lett 21:2479–2482

    Article  CAS  Google Scholar 

  • Chapman S (1930) A theory of upper atmospheric ozone. Quart J R Meteorol Soc 3: 103–125

    Google Scholar 

  • Chappellaz J, Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1990) Ice-core record of atmospheric methane over the past 160,000 years. Nature (London) 345:127–131

    Article  CAS  Google Scholar 

  • Ciais P, Tans P, White J, Trolier M, Francey R, Berry J, Randall D, Sellers P, Collatz J, Schimel DS (1995) Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA/CMDL global air sampling network. J Geophys Res 100:5051–5070

    Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (Hrsg) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque J-F, Naik V, Oltmans SJ, Schwab J, Shindell DT, Thompson AM, Thouret V, Wang Y, Zbinden RM (2014) Global distribution and trends of tropospheric ozone: an observation-based review. Elementa Sci Anthropocene 2:29. https://doi.org/10.12952/journal.elementa.000029

    Google Scholar 

  • Crutzen PJ (1971) Ozone production rates in an oxygen-hydrogen-nitrogen oxid atmosphere. J Geophys Res 76:7311–7327

    Article  CAS  Google Scholar 

  • Crutzen PJ, Arnold F (1986) Nitric acid cloud formation in the cold Antarctic stratosphere: A major cause for the springtime ozone hole. Nature (London) 324:651–655

    Article  CAS  Google Scholar 

  • Crutzen PJ, Gidel LT (1983) A two-dimensional photochemical model of the atmosphere. 2: The tropospheric budgets of anthropogenic chlorocarbons CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone. J Geophys Res 88:6641–6661

    Article  CAS  Google Scholar 

  • Crutzen PJ, Howard CJ (1978) The effect of the HO2 + NO-reaction rate constant on one-dimensional model calculations of stratospheric ozone pertubations. Pure Appl Geophys 116:497–510

    Article  CAS  Google Scholar 

  • Deshler T, Adriani A, Gobbi GP, Hofmann DJ, Di Donfrancesco G, Johnson BJ (1992) Volcanic aerosol and ozone depletion within the antarctic polar vortex during the austral spring of 1991. Geophys Res Lett 19:1819–1822

    Article  CAS  Google Scholar 

  • Díaz S (1995) Elevated-CO2 responsiveness,interactions at the community level, and plant functional types. J. Biogeogr 22: 289-295

    Article  Google Scholar 

  • Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D (2011) Global atmospheric methane: Budget, changes and dangers. Philos Trans R Soc London Ser A 369:2058–2072

    Article  CAS  Google Scholar 

  • Dlugokencky EJ, Lang PM, Crotwell AM, Masarie KA (2012) Atmospheric methane dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1983–2011. https://www.esrl.noaa.gov/psd/iasoa/dataset_record/?datasetid=5069. Zugegriffen: 20. Febr. 2017

  • Dodge MC (1977) Combined use of modeling techniques and smog chamber data to derive ozone-precursor relationships. International Conference on Photochemical Oxidant Pollution and its Control: Proceedings, Bd IIB, EPA/600/3-77-001b. U.S. Environmental Protection Agency, Research Triange Park, NC, S 881–889

    Google Scholar 

  • Drdla K, Tabazadeh A, Turco RP, Jacobson MZ (1994) Analysis of the physical state of one arctic polar stratospheric cloud based on observations. Geophys Res Lett 21: 2475–2478

    Article  CAS  Google Scholar 

  • Duncan BN, Logan JA, Bey I, Megretskaia IA, Yantosca RM, Novelli PC, JonesNB, Rinsland CP (2007) Global budget of CO, 1988–1997: Source estimates and validation with a global model. J Geophys Res 112:D22301

    Google Scholar 

  • Fahey DW, Kawa SR, Woodbridge EL, Tin P, Wilson JC, Jonsson HH, Dye JE, Baumgardner D, Borrmann S, Toohey DW, Avallone LM, Proffitt MH, Margitan J, Loewenstein M, Podolske JR, Sawalitsch RJ, Wofsy SC, Ko MKW, Anderson DE, Schoeberl MR, Chan KR (1993) In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion. Nature 363:509–514

    Article  CAS  Google Scholar 

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature (London) 315:207–210

    Article  CAS  Google Scholar 

  • Frankenberg C, Meirink F, Bergamaschi P, Goede APH, Heimann M, Körner S, Platt U, van Weele M, Wagner T (2006) Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004. J Geophys Res 111. https://doi.org/10.1029/2005JD006235

  • Frieler K, Rex M, Salawitch RJ, Canty T, Streibel M, Stimpfle RM, Pfeilsticker K, Dorf M, Weisenstein DK, Godin-Beekmann S (2005) Toward a better quantitative understanding of polar stratospheric ozone loss. Geophys Res Lett 33. https://doi.org/10.1029/2005GL025466

    Article  Google Scholar 

  • Galbally IE, Roy CR (1980) Destruction of ozone at the earth’s surface. Quart J R Meteorol Soc 106:599–620

    Article  CAS  Google Scholar 

  • GEA (2006) Energy resources and potentials. In: Global Energy Assessment – Toward a Sustainable Future. Cambridge University Press, Cambridge, S 425–512

    Google Scholar 

  • Gleason JF, Bhartia BK, Herman JR, McPeters R, Newman P, Stolarski RS, Flynn L, Labow G, Larko D, Seftor C, Wellemeyer C, Komhyr WD, Miller AJ, Planet W (1993) Record low global ozone in 1992. Science 260:523–526

    Article  CAS  Google Scholar 

  • Goudriaan J (1992) Biosphere structure, carbon sequestering potential and the atmospheric 14C carbon record. J Exp Bot 43: 1111–1119

    Article  Google Scholar 

  • Graedel T E , Crutzen P J (1994) Chemie der Atmosphäre. Bedeutung für Klima und Umwelt. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Hanson D, Mauersberger K (1988) Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere. Geophys Res Lett 15:855–858

    Article  CAS  Google Scholar 

  • Hofmann DJ (1987) Perturbations of the global atmosphere associated with the El Chichon volcanic eruption of 1982. Rev Geophys 25:743–759

    Article  Google Scholar 

  • Hofmann DJ, Solomon S (1989) Ozone destruction through heterogeneous chemistry following the eruption of El Chichon. J Geophys Res 94:5029–5041

    Article  CAS  Google Scholar 

  • Hofmann DJ, Oltmans SJ, Harris JM, Solomon S, Deshler T, Johnson BJ (1992) Observation and possible causes of new ozone depletion in Antarctica in 1991. Nature 359:283–287

    Article  CAS  Google Scholar 

  • Hofmann DJ, Oltmans SJ, Komhyr WD, Harris JM, Lathrop JA, Langford AO, Deshler T, Johnson BJ, Torres A, Matthews WA (1994) Ozone loss in the lower stratosphere over the United States in 1992–1993: Evidence for heterogeneous chemistry on the Pinatubo aerosol. Geophys Res Lett 21:65–68

    Article  CAS  Google Scholar 

  • Hofmann DJ, Oltmans J, Harris JM, Johnson BJ, Lathrop JA (1997) Ten years of ozone sonde measurements at the south pole: Implications for recovery of springtime Antarctic ozone. J Geophys Res 102:8931–8943

    Article  CAS  Google Scholar 

  • Hörmann C, Sihler H, Bobrowski N, Beirle S, Penning de Vries M, Platt U, Wagner T (2013) Systematic investigation of bromine monoxide in volcanic plumes from space by using the GOME-2 instrument. Atmos Chem Phys 13:4749–4781. https://doi.org/10.5194/acp-13-4749- 2013

  • Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012) Carbon emissions from land use and land-cover change. Biogeosciences 9:5125–5142

    Article  CAS  Google Scholar 

  • Idso KE, Idso SB (1994) Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: A review of the past 10 years’ research. Agr Forest Meteorol 69: 153–203

    Article  Google Scholar 

  • Johnston HS (1971) Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173:517–522

    Article  CAS  Google Scholar 

  • Johnston HS (1975) Global ozone balance in the natural stratophere. Rev Geophys Space Phys 13:637–649

    Article  Google Scholar 

  • Johnston HS, Podolske J (1978) Interpretations of stratospheric chemistry. Rev Geophys Space Phys 16:491–519

    Google Scholar 

  • Jouzel J, Lorius C, Petit JR, Genthon C, Barkov NI, Kotlyakov VM, Petrov VM (1987) Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature (London) 329:403–408

    Article  CAS  Google Scholar 

  • Junge CE (1963) Air chemistry and radioactivity. Academic Press, New York

    Google Scholar 

  • Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2005) Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: Observations and carbon cycle implications. In: Ehleringer JR, Cerling TE, Dearing MD (Hrsg) A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. Springer, New York, S 83–113

    Google Scholar 

  • Keeling RF, Shertz S (1992) Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358:723–727

    Article  CAS  Google Scholar 

  • van Keulen H, van Laar HH, Louwerse W, Goudriaan J (1980) Physiological aspects of increased CO2 concentration. Experientia 36:787–792

    Google Scholar 

  • Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–349

    Article  CAS  Google Scholar 

  • Koike M, Jones YNB, Matthews WA, Johnston PV, McKenzie RL, Kinnison D, Rodriguez J (1994) Impact of Pinatubo aerosols on the partitioning between NO2 and HNO3. Geophys Res Lett 21:597–600

    Google Scholar 

  • Körner C, Arnone III JA (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257: 1672–1675

    Article  CAS  Google Scholar 

  • Lee C, Martin RV, van Donkelaar A, Lee H, Dickerson RR, Hains JC, Krotkov N, Richter A, Vinnikov K, Schwab JJ (2011) SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations. J Geophys Res 116. https://doi.org/10.1029/2010JD014758

  • Le Quéré C., Andres RJ, Boden T, Conway T, Houghton RA, House JI, Marland G, Peters GP, van der Werf GR, Ahlström A, Andrew RM, Bopp L, Canadell JG, Ciais P, Doney SC., Enright C, Friedlingstein P, Huntingford C, Jain AK, Jourdain C, Kato E, Keeling RF., Klein Goldewijk K, Levis S, Levy P, Lomas M, Poulter B, Raupach MR, Schwinger J, Sitch S, Stocker BD, Viovy N, Zaehle S, and Zeng N (2013) The global carbon budget 1959–2011. Earth Syst Sci Data 5: 165–185

    Google Scholar 

  • Levy H (1971) Normal atmosphere: Large radical and formaldehyde concentrations predicted, Science 173: 141–143

    Article  CAS  Google Scholar 

  • Logan JA, Prather MJ, Wofsy SC, McElroy MB (1981) Tropospheric chemistry: A global perspective. J Geophys Res 86:7210–7254

    Article  CAS  Google Scholar 

  • London J (1980) Radiative energy sources and sinks in the stratosphere and mesosphere. In: Nicolet M, Aikin AC (Hrsg) Proceedings of the nato advanced study institute on atmospheric ozone: Its variations and human influences. US Dept of Transportations, Washington DC, S 703–721

    Google Scholar 

  • McElroy MB, Salawitch RJ, Wofsy SC, Logan JA (1986) Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature (London) 321:759–762

    Article  CAS  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production, Nature, 363: 234–240

    Article  CAS  Google Scholar 

  • Molina LT, Molina MJ (1987) Production of Cl2O2 by the self reaction of ClO radical. J Phys Chem 91:433–436

    Google Scholar 

  • Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethans: Chlorine atom catalyzed destruction of ozone. Nature (London) 249:810–812

    Article  CAS  Google Scholar 

  • Möller D (2003) Luft: Chemie, Physik, Biologie, Reinhaltung, Recht. de Gruyter, Berlin

    Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjnaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148

    Article  CAS  Google Scholar 

  • Neftel A, Oeschger H, Schwander J, Stauffer B, Zumbrunn R (1982) Ice core sample measurements give atmosphere CO2 content during the past 40000 yrs. Nature (London) 295:220–223

    Article  CAS  Google Scholar 

  • Neftel A, Moor E, Oeschger H, Stauffer B (1985) Evidence from polar ice cores for the increase in atmosphere CO2 in the past two centuries. Nature (London) 315:45–47

    Article  CAS  Google Scholar 

  • Oeschger H, Siegenthaler U, Schotterer U, Guglemann A (1975) A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168–192

    Article  CAS  Google Scholar 

  • Pawson S, Steinbrecht W, Charlton-Perez AJ, Fujiwara M, Karpechko AY, Petropavlovskikh I, Urban J, Weber M (2014) Update on global ozone: Past, present, and future. In: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project – Report No. 55. World Meteorological Organization, Genf, Schweiz

    Google Scholar 

  • Peng TH (1984) Invasion of fossil fuel CO2 into the ocean. In: Brutsaert W, Jirka GH (Hrsg) Gas transfer at water surfaces. Reidel, Dordrecht, S 515–523

    Chapter  Google Scholar 

  • Peterson BJ, Melillo JM (1985) The potential storage of carbon caused by eutrophication of the biosphere. Tellus 37B: 117–127

    Article  CAS  Google Scholar 

  • Prinn RG, Weiss RF, Fraser PJ et al (2000) A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J Geophys Res Atmos 105:17751–17792

    Article  CAS  Google Scholar 

  • Quay PD, Tilbrook B, Wong SC (1992) Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science 256:74–79

    Article  CAS  Google Scholar 

  • Reineke W und Schlömann M (2007) Umweltmikrobiologie. Spektrum Akademischer Verlag, München

    Google Scholar 

  • Rex M, Salawitch RJ, Deckelmann H et al (2006) Arctic winter 2005: Implications for stratospheric ozone loss and climate change. Geophys Res Lett 33. https://doi.org/10.1029/2006GL026731

  • Rigby M, Prinn RG, Fraser PJ et al (2008) Renewed growth of atmospheric methane. Geophys Res Lett 35. https://doi.org/10.1029/2008GL036037

  • Riley JP, Chester R (1971) Introduction to marine chemistry. Academic Press, London

    Google Scholar 

  • Rodriguez JM, Ko MKW, Sze ND, Heisey CW (1994) Ozone response to enhanced heterogeneous processing after the eruption of Mt. Pinatubo. Geophys Res Lett 21:209–212

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: An Analysis of Global Change. Academic Press, London

    Google Scholar 

  • Schoeberl MR, Bhartia PK, Hilsenrath E (1993) Tropical ozone loss following the eruption of Mt. Pinatubo. Geophys Res Lett 20:29–32

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climae Change. 2. Aufl. John Wiley & Sons, New Jersey

    Google Scholar 

  • Siegenthaler U (1983) Uptake of excess CO2 by an outcrop-diffusion model of the ocean. J Geophys Res 88:3599–3608

    Article  CAS  Google Scholar 

  • Siegenthaler U, Oeschger H (1978) Predicting future atmospheric carbon dioxide levels. Science 199:388–395

    Article  CAS  Google Scholar 

  • Solomon S, Garcia RR, Rowland FS, Wuebbles DJ (1986) On the depletion of antarctic ozone. Nature (London) 321:755–758

    Article  CAS  Google Scholar 

  • Stolarski RS, Bloomfield P, McPeters RD (1991) Total ozone trends deduced from Nimbus 7 TOMS data. Geophys Res Lett 18:1015–1018

    Article  CAS  Google Scholar 

  • Takahashi T (1979) Carbon dioxide chemistry in ocean water. In: Elliott WP, Machta L (Hrsg) Carbon dioxide effects research and assessment program. U. S. Dept. of Energy, Washington, S 63–71

    Google Scholar 

  • United Nations Environment Programme (UNEP) (2014) Sand, rarer than one thinks. Thematic focus: Ecosystem management, Environmental governance, Resource efficiency. http://www.unep.org/pdf/UNEP_GEAS_March_2014.pdf. Zugegriffen: 20. Febr. 2017

  • Volz A, Kley D (1988) Ozone measurements made in the 19th century: An evaluation of the Montsouris series. Nature (London) 332:240–242

    Article  CAS  Google Scholar 

  • Wagener K (1979) The carbonate system of the ocean. In: Bolin B et al (Hrsg) The global carbon cycle. Wiley and Sons, New York, S 251–258

    Google Scholar 

  • Wagner T, Beirle S, Deutschmann T, Grzegorski M, Platt U (2008) Dependence of cloud properties derived from spectrally resolved visible satellite observations on surface temperature. Atmos Chem Phys, 8: 2299–2312

    Article  CAS  Google Scholar 

  • Wang Z, Sassen K (2000) Ozone destruction in continental stratus clouds: An aircraft case study. J Appl Meteorol 39:875–886

    Article  Google Scholar 

  • Warneck P (1988) Chemistry of the natural atmosphere. Academic Press, San Diego

    Google Scholar 

  • Wennberg PO, Cohen RC, Stimpfle RM, Koplow JP, Anderson JG, Sawalitsch RJ, Fahey DW, Woodbridge EL, Keim ER, Gao RS, Webster CR, May RD, Toohey DW, Avallone LM, Proffitt MH, Loewenstein M, Podolske JR, Chan KR, Wofsy SC (1994) Removal of stratospheric O3 by radicals: In situ measurements of OH, HO2, NO, NO2, ClO and BrO. Science 266:398–404

    Google Scholar 

  • Wofsy SC, McElroy MB, Yung YL (1975) The chemistry of atmospheric bromine. Geophys Res Lett 2:215–218

    Article  CAS  Google Scholar 

  • Yung YL, Pinto JP, Watson RT, Sander SP (1980) Atmospheric bromine and ozone perturbations in the lower stratosphere. J Atmos Sci 37:339–353

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Roedel, W., Wagner, T. (2017). Atmosphärische Spurengase. In: Physik unserer Umwelt: Die Atmosphäre. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54258-3_8

Download citation

Publish with us

Policies and ethics