Skip to main content

Diabetesdiagnostik einschließlich analytischer Verfahren zur Glukosebestimmung

  • Chapter
Book cover POCT - Patientennahe Labordiagnostik

Zusammenfassung

Dieses Kapitel gibt eine Übersicht über die derzeitigen Möglichkeiten des POCT zu Primärdiagnostik und Verlaufsmonitoring des Diabetes mellitus. Es werden die biochemischen Messprinzipien erläutert und die unterschiedlichen Glukose- und HbA1c-Messsysteme in ihren jeweiligen Leistungscharakteristiken erläutert. Dabei werden auch ausführlich das verwendete Probenmaterial, Einflussfaktoren und Interferenzen, sowie Evaluierung und Validierung der Verfahren besprochen. Aber auch andere klinische Aspekte der Diabetesdiagnostik wie z. B. die Blutzuckermessung an alternativen Körperstellen, werden gewürdigt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Zu Kap. 12.1 und 12.2

  1. Asworth L, Gibb I, Alberti KG (1992) HemoCue: evaluation of a portable photometric system for determining glucose in whole blood. Clin Chem 38: 1479–1482

    Google Scholar 

  2. Bossuyt PM, Reitsma JB, Bruns DE et al. (2003) The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem 49: 7–18

    Google Scholar 

  3. Bossuyt PM, Reitsma JB, Bruns DE et al. (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Clin Chem 49: 1–6

    Google Scholar 

  4. CLSI (2008) Guidelines for comparison of glucose methodologies that use different sample types; Proposed Guideline. CLSI document POCT 6-P. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  5. D’Orazio P, Burnett RW, Fogh-Andersen N et al. (2005) The International Federation of Clinical Chemistry Scientific Division Working Group on Selective Electrodes and Point of Care Testing: Approved IFCC recommendation on reporting results for blood glucose (abbreviated). Clin Chem 51: 1573–1576

    Google Scholar 

  6. Dungan K, Chapman J, Braithwaite SS, Buse J (2007) Glucose measurements: Confounding issues in setting targets for inpatient management. Diabetes Care 30: 403–409

    Google Scholar 

  7. Janssen W, Harff G, Caers M, Schellekens A (1998) Positive interference of icodextrin metabolites in some enzymatic glucose methods. Clin Chem 44: 2379–2380

    Google Scholar 

  8. Karon BS, Griesmann L, Scott R et al. (2008) Evaluation of the impact of hematocrit and other interference on the accuracy of hospital-based glucose meters. Diabetes Technol Ther 10: 111–120

    Google Scholar 

  9. Kellerer M, Danne T (Hrsg.) (2010) Praxis-Leitlinien der Deutschen Diabetes-Gesellschaft; Diabetologie und Stoffwechsel 5(Suppl 2); Evidenzbasierte Leitlinien DDG, aktualisierte Version auf den Webseiten der DDG: www.deutsche-diabetes-gesellschaft.de/Evidenzbasierte Leitlinien/

  10. Koschinsky T (2011) Genauigkeit der Blutglukosemessung – aktuelle Anforderungen und Interferenzen. Diabetologie Stoffw 6: 43–47

    Google Scholar 

  11. Koschinsky T, Junker R, Luppa PB, Schlebusch H. Improvement of therapeutic safety through standardized plasma calibration of blood glucose test systems at the point-of-care. J. Lab Med 2009;33: 349–52

    Google Scholar 

  12. Kost GJ, Nguyen TH, Tang Z (2000) Wholeblood glucose and lactate: trilayer biosensors, drug interference, metabolism, and practice guidelines. Arch Pathol Lab Med 124: 1128–1134

    Google Scholar 

  13. Kost GJ, Vu HT, Inn M et al. (2000) Multicenter study of whole-blood creatinine, total carbon dioxide content, and chemistry profiling for laboratory and point-of-care testing in critical care in the United States. Crit Care Med 28: 2379–2389

    Google Scholar 

  14. Mahoney J, Ellison J (2007) Assessing the quality of glucose monitor studies: a critical evaluation of published reports. Clin Chem 53: 1122–1128

    Google Scholar 

  15. Mahoney JJ, Ellison JM (2007) Assessing glucose monitor performance – a standardized approach. Diabetes Technology & Therapeutics 9: 545–552

    Google Scholar 

  16. NCCLS (2002) Point-of-care blood glucose testing in acute and chronic care facilities; Approved Guideline. NCCLS document C30–A2

    Google Scholar 

  17. Patrick L, Lynch M, O’Kane MJ (2002) Methemoglobin interferes with the HemoCue B-glucose Analyzer. Clin Chem 48: 581–583

    Google Scholar 

  18. Rao LV, Jakubiak F, Sidwell JS, Winkelmann JW, Snyder ML (2005) Accuracy evaluation of a new glucometer with automated hematocrit measurement and correction. Clin Chim Acta 356: 178–183

    Google Scholar 

  19. Tang Z, Du X, Loie RF, Kost GJ (2000) Effects of drugs on glucose measurements with handheld glucose meters and a portable glucose analyzer. Am J Clin Pathol 113: 75–86

    Google Scholar 

  20. Tang Z, Lee JH, Louie RF, Kost GJ (2000) Effects of different hematocrit levels on glucose measurements with handheld meters for point-of-care testing. Arch Pathol Lab Med 124: 1135–1140

    Google Scholar 

  21. Tang Z, Louie RF, Payes M, Chang KC, Kost GJ (2000) Oxygen effects on glucose measurements with a reference analyzer and three handheld meters. Diabetes Technol Ther 2: 349–362

    Google Scholar 

Zu Kap. 12.3 bis 12.7

  1. Arabadjief D, Nicholas JH (2006) Assessing glucose meter accuracy. Curr Med Res Opin 22: 2167–2174

    Google Scholar 

  2. Bina DM, Anderson RL, Johnson ML, Bergenstal RM, Kendall DM (2003) Clinical impact of prandial state, exercise, and site preparation on the equivalence of alternative-site blood glucose testing. Diabetes Care 26: 981–985

    Google Scholar 

  3. Brunkhorst FM, Engel C, Bloos F et al. (2008) German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358: 125–139

    Google Scholar 

  4. Brunkhorst FM, Wahl HG (2006) Blood glucose measurements in the critically ill: more than just a blood draw. Crit Care 10: 178

    Google Scholar 

  5. Bruns DE, Knowler WC (2009) Stabilization of glucose in blood samples: why it matters. Clin Chem 55: 850–852

    Google Scholar 

  6. Bundesärztekammer (2014) Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen (RiliBÄK 2014). Dtsch Ärztebl 111:A1583-A1618

    Google Scholar 

  7. Bürgi W (1974) Oraler Glukosetoleranztest: unterschiedlicher Verlauf der kapillären und venösen Belastungskurven. Schweiz Med Wochenschr 104: 1698–1699

    Google Scholar 

  8. Burrin JM, Alberti KG (1990) What is blood glucose: can it be measured? Diab Med 7: 199–206

    Google Scholar 

  9. Danne T, Mueller-Wieland D, Lackner K, Schleicher E (2009) Gemeinsame Empfehlungen der DDG und DGKL zur Qualitätssicherung der HbA1c-Messung. Dtsch Ärzteblatt 106 (33)

    Google Scholar 

  10. D‘Orazio P, Burnett RW, Fogh-Andersen N et al. (2005) Approved IFCC recommendation on reporting results for blood glucose (abbreviated). Clin Chem 51(9): 1573–1576

    Google Scholar 

  11. Dungan K, Chapman J, Braithwaite SS, Buse J (2007) Glucose measurements: Confounding issues in setting targets for inpatient management. Diabetes Care 30: 403–409

    Google Scholar 

  12. Finkielmann JD, Oyen LJ, Afessa B (2005) Agreement between bedside blood and plasma glucose measurement in the ICU setting. Chest 127: 1749–1751

    Google Scholar 

  13. Gambino R, Piscitelli J, Ackattupathil TA et al. (2009) Acidification of blood is superior to sodium fluoride alone as an inhibitor of glycolysis. Clin Chem 55: 1019–1021

    Google Scholar 

  14. Harrison JG (1995) Accuracy of fingerstick glucose values in shock patients. Am J Crit Care 4: 44–48

    Google Scholar 

  15. Haupt A, Berg B, Paschen P et al. (2005) The effects of skin temperature and testing site on blood glucose measurements taken by a modern blood glucose monitoring device. Diabetes Technol Ther 7: 597–601

    Google Scholar 

  16. Henrichs HR (2010) Kontinuierliche Glukosemessung (CGM) in der Gewebeflüssigkeit – Wissenschaftliche Bewertung von CGM und medizinische Beurteilung des Nutzens für die Diabetestherapie (AGDT-DDG-GKV CGM-Positionspapier). Im Internet: www.diabetes-technologie.de/vortraege/vortraege-2010.htm

  17. Ingels C, Debaveye Y, Milants I et al. (2006) Strict blood glucose control with insulin during intensive care after cardiac surgery: impact on 4-years survival, dependency on medical care, and quality-of-life. Eur Heart J 27: 2716–2724

    Google Scholar 

  18. Jungheim K, Koschinsky T (2002) Glucose monitoring at the arm: risky delays of hypoglycemia and hyperglycemia detection. Diabetes Care 25: 956–960

    Google Scholar 

  19. Jungheim K, Koschinsky T (2002) Glucose monitoring at the thenar: evaluation of upper dermal blood glucose kinetics during rapid systemic blood glucose changes. Horm Metab Res 34: 325–329

    Google Scholar 

  20. Kellerer M, Danne T (Hrsg.) (2015) Praxis-Leitlinien der Deutschen Diabetes-Gesellschaft; Diabetologie und Stoffwechsel 10 (Suppl 2); Evidenzbasierte Leitlinien DDG, aktualisierte Version auf den Webseiten der DDG: www.deutsche-diabetes-gesellschaft.de/Evidenzbasierte Leitlinien

  21. Kerner W, Brückel J (2015) Definition, Klassifikation und Diagnostik des Diabetes melitus. Diabetologie und Stoffwechsel 10 (Suppl 2) S 98–S101; Aktualisierte Version auf den Webseiten der DDG: www.deutsche-diabetes-gesellschaft.de/Evidenzbasierte Leitlinien/Praxisempfehlungen der Deutschen Diabetes Gesellschaft/ Definition

  22. Khan AI, Vasquez Y, Gray J, Wians FH Jr, Kroll MH (2006) The variability of results between point-of-care testing glucose meters and the central laboratory analyzer. Arch Pathol Lab Med 130: 1527–1532

    Google Scholar 

  23. Kleinwechter H, Schaefer-Graf U (2011) Gestationsdiabetes mellitus; Diabetologie und Stoffwechsel 5 (Suppl); Evidenzbasierte Leitlinien DDG, aktualisierte Version auf den Webseiten der DDG: www.deutsche-diabetes-gesellschaft.de/Evidenzbasierte Leitlinien/Gestationsdiabetes mellitus

  24. Koschinsky T, Jungheim K, Heinemann L (2003) Glucose sensors and the alternate site testing-like phenomenon: relationship between rapid blood glucose changes and glucose sensor signals. Diabetes Technol Ther 5: 829–842

    Google Scholar 

  25. Kulkarni A, Saxena M, Price G, O’Leary MJ, Jaques T, Myburgh JA (2005) Analysis of blood glucose measurements using capillary and arterial blood samples in intensive care patients. Intensive Care Med 31: 142–145

    Google Scholar 

  26. Kuwa K, Nakayama T, Hoshino T, Tominaga M (2001) Relationships of glucose concentrations in capillary whole blood, venous whole blood and venous plasma. Clin Chim Acta 307: 187–192

    Google Scholar 

  27. Lackner K, Luppa PB, Koschinsky T, Danne T (2009) Ein einheitlicher Kalibrationsbezug (Plasma statt Vollblut) bei der patientennahen Glukosebestimmung verbessert die Therapiesicherheit beim Einsatz von Glukosekonzentrationswert-abhängigen Therapiealgorithmen: Eine gemeinsame Initiative der DGKL, diabetesDE und der DDG.Internet: http://www.deutsche-diabetes-gesellschaft.de/redaktiion/news/POCT-Glukose_Plasmastandard_DGKL_diabetesDE_1209.pdf

  28. Mikesh LM, Bruns DE (2008) Stabilization of glucose in blood specimen: mechanism of delay in fluoride inhibition of glycolysis. Clin Chem 54: 930–932

    Google Scholar 

  29. NICE-SUGAR Study Investigators, Finfer et al. (2009) Intensive versus Conventional Glucose Control in Critically Ill Patients N Engl J Med 360: 1283–1297

    Google Scholar 

  30. Rao LV, Jakubiak F, Sidwell JS, Winkelmann JW, Snyder ML (2005) Accuracy evaluation of a new glucometer with automated hematocrit measurement and correction. Clin Chim Acta 356: 178–183

    Google Scholar 

  31. Schetz M, Vanhorebeek I, Wouters PJ, Wilmer A, Van den Berghe G (2008) Tight blood glucose control Is renoprotective in critically ill patients. J Am Soc Nephrol 19: 571–578

    Google Scholar 

  32. The International Expert Committee (2009). International Expert Committee report on the role of the A1c assay in the diagnosis of diabetes. DiabetesCare 32: 1327–1334

    Google Scholar 

  33. Van den Berghe G (2008) Insulin therapy in the intensive care unit should be targeted to maintain blood glucose between 4.4 mmol/l and 6.1 mmol/l. Diabetologia 51: 911–915

    Google Scholar 

  34. Van den Berghe G, Wilmer A, Hermans G et al. (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354: 449–461

    Google Scholar 

  35. Van den Berghe G, Wouters P, Weekers F et al. (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345: 1359–1367

    Google Scholar 

  36. Vanhorebeek I, Langouche L, Van den Berghe G (2007) Tight blood glucose control: what is the evidence? Crit Care Med 35 (9 Suppl): S496–S502

    Google Scholar 

  37. Lenters-Westra E, Slingerland RJ (2014) Three of 7 hemoglobin A1c point-of-care instruments do not meet generally accepted analytical performance criteria. Clin Chem 60:1062–1072

    Google Scholar 

  38. Kerner W, Freckmann G, Müller UA, Roth J, Schleicher E, Niederau C, Müller-Wieland D, Landgraf R, Heinemann L (2015) Positionspapier der Kommission für Labordiagnostik in der Diabetologie der DGKL und der DDG zur HbA1c-Messung. Diabetologie und Stoffwechsel 10: 329–3

    Google Scholar 

  39. International Organization for Standardization (2003) In Vitro Diagnostic Test Systems – Requirements for Blood-Glucose Monitoring Systems for Self-Testing in Managing Diabetes Mellitus. EN ISO 15197:2003 (E). Geneva

    Google Scholar 

  40. International Organization for Standardization (2013) In Vitro Diagnostic Test Systems – Requirements for Blood-Glucose Monitoring Systems for Self-Testing in Managing Diabetes Mellitus. ISO 15197:2013 (E). Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Wahl, H.G., Koschinsky, T. (2017). Diabetesdiagnostik einschließlich analytischer Verfahren zur Glukosebestimmung. In: Luppa, P., Junker, R. (eds) POCT - Patientennahe Labordiagnostik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54196-8_12

Download citation

Publish with us

Policies and ethics