Skip to main content

Anode materials for lithium-ion batteries

  • Chapter
  • First Online:

Abstract

Secondary lithium cells initially had a metallic lithium foil as an anode (negative electrode) [1]. Pure lithium has a very high specific capacity (3,860 mAh/g) and a very negative potential, resulting in very high cell voltage. However, cycling efficiency decreases as lithium dissolves repeatedly while the cell is discharging and lithium is deposited as it is charging. This means that two or three times the normal amount of lithium must be used. In addition, lithium can be deposited as foam and as dendrites. The latter might grow through the separator [2, 3]. These dendrites can cause local short circuits, which might result in the cell completely self-discharging or, in the worst case, lead to an internal thermal chain reaction, fire, or explosion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Abraham KM (1993) Electrochimical Acta 38:1233

    Article  Google Scholar 

  2. Matsuda Y (1989) Nihon Kagaku Kaishi 110:1

    Article  Google Scholar 

  3. Peled E (1979) J Electrochem Soc India 126:2047

    Article  Google Scholar 

  4. Bolloré (www.bluecar.fr/de/pages-innovation/batterie-lmp.aspx)

  5. Armand M (1980) In: Broadhead J, Steele BCH (ed.) Materials for advanced batteries. Plenum Press, New York, pp. 145 – 150

    Chapter  Google Scholar 

  6. Nishi Y (1998) In: Wakihara M, Yamamoto O (eds.) Lithium ion batteries. Wiley-VCH, New York, p. 181

    Chapter  Google Scholar 

  7. Megahead S, Scrosati B (1994) J Power Sources 51:79

    Article  Google Scholar 

  8. Dahn JR et al. (1994) In: Pistoia G (ed.) Lithium batteries–new materials, developments, and perspectives, industrial chemistry library. Elsevier, Amsterdam, pp. 1 – 47

    Google Scholar 

  9. Broussely M, Biensan P, Simon B (1999) Electrochim Acta 45:3

    Article  Google Scholar 

  10. von Sacken U, Nodwell E, Sundher A, Dahn JR (1994) Solid State Ionics 69:284

    Article  Google Scholar 

  11. Jossen A, Wohlfahrt-Mehrens M (2007) Overview on current status of lithium-ion batteries. In: 2nd International renewable energy storage conference, Bonn, 19 – 21 Nov 2007

    Google Scholar 

  12. Castner JH (1893) GB 19089

    Google Scholar 

  13. Acheson EG (1895) US 568 323, 1895

    Google Scholar 

  14. Marsh H, Griffiths JA (1982) A high, resolution electron microscopy study of graphitization of graphitizable carbon. International Symposium on Carbon, Toyohashi, p. 81

    Google Scholar 

  15. Omaru A, Azuma H, Nishi Y (1992) Sony Corp., Japan Patent Application: WO 92-JP238 9216026

    Google Scholar 

  16. Sekai K, Azuma H, Omaru A, Fujita S, Imoto H, Endo T, Yamaura K, Nishi Y, Mashiko S, Yokogawa M (1993) J Power Sources 43:241

    Article  Google Scholar 

  17. Winter M, Besenhard JO, Spahr ME, Novák P (1998) Adv Mater 10:725

    Article  Google Scholar 

  18. Harris SJ (LithiumBatteryResearch.com) (2009) on YouTube; S.J. Harris, A. Timmons, D.R. Baker, C. Monroe. Chem Phys Letters 2010 485:265

  19. Peled E (1979) J Electrochem Soc., 126, p. 2047

    Article  Google Scholar 

  20. Orsini F, Dupont L, Beaudoin B, Grugeon S, Tarascon J-M (2000) Int J Inorg Mater 2:701

    Article  Google Scholar 

  21. Peled E, Golodnitsky D, Ardel G (1997) J Electrochem Soc 144:208

    Article  Google Scholar 

  22. Dahn JR, Zheng T, Liu Y, Xue JS (1995) Science 270:590

    Article  Google Scholar 

  23. Liu Y, Xue Js, Zheng T, Dahn JR (1996) Carbon, 34:193

    Article  Google Scholar 

  24. Dahn JR (1997) Carbon 1997, 35:825

    Google Scholar 

  25. Wen CJ, Huggins RA (1981) J Solid State Chem 37:271

    Article  Google Scholar 

  26. Weydanz WJ, Wohlfahrt-Mehrens M, Huggins RA (1999) J Power Sources 81 − 82:237

    Article  Google Scholar 

  27. Limthongkul Pimpa, Jang Young-Il, Dudney Nancy J, Chiang Yet-Ming (2003) J Power Sources 119–121:604 – 609

    Google Scholar 

  28. Huggins RA (1999) J Power Sources 81 – 82:13 – 19

    Article  Google Scholar 

  29. Graetz J, Ahn CC, Yazami R, Fultz B (2003) Electrochem Solid-State Lett 6(9):A194 – A197

    Article  Google Scholar 

  30. Hochgatterer NS et al (2008) Electrochemical and solid-state letters 11(5):A76 − A80

    Article  Google Scholar 

  31. Zaghib K, Simoneau M, Armand M, Gauthier M (1999) J Power Sources 81 – 82:90

    Google Scholar 

  32. Pillot C (2011) The rechargeable battery market past and future. Batteries 2011, 28 – 30 Sept 2011. Cannes

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Călin Wurm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wurm, C., Oettinger, O., Wittkaemper, S., Zauter, R., Vuorilehto, K. (2018). Anode materials for lithium-ion batteries. In: Korthauer, R. (eds) Lithium-Ion Batteries: Basics and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53071-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53071-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53069-6

  • Online ISBN: 978-3-662-53071-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics