Skip to main content

Conversion Routes from Biomass to Biokerosene

  • Chapter
  • First Online:
Biokerosene

Abstract

The goal of this paper is to give an overview of the current possibilities to produce biokerosene from different types of biomass. Therefore different existing processes are characterized in relation to the useable feedstock (i.e. vegetable oil, starch, sugar, lignocellulose) and the type of conversion process (i.e. mechanical, biochemical, thermo-chemical or physico-chemical). In this context possible intermediate products as well as the final products are defined. Afterwards the six most advanced conversion pathways are described in more detail. This includes the hydroprocessed esters and fatty acids (HEFA) route, the direct sugar to hydrocarbons (DSHC) route, the alcohol-to-jet (AtJ) route, the biogas-to-liquid (Bio-GtL) route, the biomass-to-liquid (BtL) route as well as the hydrotreated depolymerized cellulosic jet (HDCJ) route. For each route the possible feedstock and the technical specifications are addressed. Finally a short outlook for the described processes as well as a brief assessment is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Department of Economic and Social Affairs (2004) World population to 2300, United Nations ST/ESA/SER.A/236

    Google Scholar 

  2. ExxonMobil (2016) The outlok for energy: A view to 2040

    Google Scholar 

  3. Timilsina GR (2013) Biofuels in the long-run global energy supply mix for transportation. Philos T Roy Soc A 372(2006):20120323. https://doi.org/10.1098/rsta.2012.0323

    Article  Google Scholar 

  4. Månsson A, Sanches-Pereira A, Hermann S (2014) Biofuels for road transport. Analysing evolving supply chains in Sweden from an energy security perspective. Appl Energ:349–357. https://doi.org/10.1016/j.apenergy.2014.01.098

    Article  Google Scholar 

  5. Linares P, Pérez-Arriaga IJ (2013) A sustainable framework for biofuels in Europe. Energ Policy 52:166–169. https://doi.org/10.1016/j.enpol.2012.10.008

    Article  Google Scholar 

  6. Awudu I, Zhang J (2012) Uncertainties and sustainability concepts in biofuel supply chain management. A review. Renew Sust Energ Rev 16(2):1359–1368. https://doi.org/10.1016/j.rser.2011.10.016

    Article  Google Scholar 

  7. IPCC (2015) Climate change 2014. Synthesis report. |In: Core Writing Team, Pachauri RK, Meyer LA (eds) Intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  8. Sims R (2007) Good practice guidelines. Bioenergy project development and biomass supply. International Energy Agency

    Google Scholar 

  9. Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse. Grundlagen, Techniken und Verfahren, 3rd edn. Springer, Berlin

    Google Scholar 

  10. Faostat FA (2015) Statistical databases http://www.fao.org/faostat/Accessed 1 Mar 2016

  11. Department of Environment, Food and Rural Affairs (2008) Waste wood as a biomass fuel. Market information report. London

    Google Scholar 

  12. Merrild H, Christensen TH (2009) Recycling of wood for particle board production. Accounting of greenhouse gases and global warming contributions. Waste Manage Res 27(8):781–788. https://doi.org/10.1177/0734242X09349418

    Article  Google Scholar 

  13. Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops. Current status and future prospects. Global Change Biol 12(11):2054–2076. https://doi.org/10.1111/j.1365-2486.2006.01163.x

    Article  Google Scholar 

  14. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792. https://doi.org/10.1126/science.1189268

    Article  Google Scholar 

  15. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700. https://doi.org/10.1016/j.procbio.2005.04.006

    Article  Google Scholar 

  16. Zimmer Y (2010) Competitiveness of rapeseed, soybeans and palm oil. J Oilseed Brassica 1(2):84–90

    Google Scholar 

  17. Wahl N, Hildebrandt T, Moser C, Lüdeke-Freund F, Averdunk K, Bailis R, Barua K, Burritt R, Groeneveld J, Klein A-M, Kügemann M, Walmsley D, Schaltegger S, Zelt T (2012) Insights into Jatropha Projects Worldwide. Key Facts & Figures from a Global Survey. Center for Sustainability Managment (CSM), Lüneburg

    Google Scholar 

  18. van Eijck J, Smeets E, Romijn H, Balkema A, Jongshaap R (2010) Jatropha assessment. Agronomy, socio-economic issues, and ecology. Utrecht University; Technical University Eindhoven; Plant Research International, Wageningen

    Google Scholar 

  19. Neuling U, Kaltschmitt M (2014) Conversion routes for production of biokerosene – status and assessment. Biomass Conv Bioref. https://doi.org/10.1007/s13399-014-0154-2

    Article  Google Scholar 

  20. Worldwatch Institute (2007) Biofuels for transport. Global potential and implications for sustainable energy and agriculture. Earthscan, London.

    Google Scholar 

  21. Fava Neves M, Junqueira Alves Pinto M, Conejero MA, Trombin VG (2011) Food and fuel. The example of Brazil. Wageningen Academic, Wageningen

    Book  Google Scholar 

  22. Organisation for Economic Co-Operation and Development (ed) (2015) OECD FAO agricultural outlook 2015–2024, 21st edn. OECD-FAO Agricultural outlook. OECD, Paris.

    Google Scholar 

  23. Stephanie S, Malins C (2013) Availability of cellulosic residues and wastes in the EU. ICCT

    Google Scholar 

  24. Valkenburg C, Walton CW, Thompson BL, Gerber MA, Jones SB, Stevens DJ (2008) Municipal Solid Waste (MSW) to liquid fuels synthesis. Volume 1: availability of feedstock and technology, PNNL-18144. Pacific Northwest National Laboratory [PNNL], Richland

    Google Scholar 

  25. American Society for Testing and Materials (2016) Specification for aviation turbine fuel containing synthesized hydrocarbons. ASTM International, West Conshohocken (ASTM D7566)

    Google Scholar 

  26. Gormley RJ, Link DD, Baltrus JP, Zandhuis PH (2009) Interactions of jet fuels with nitrile O-rings: petroleum-derived versus synthetic fuels. Energ Fuel 23(2):857–861. https://doi.org/10.1021/ef8008037

    Article  Google Scholar 

  27. Robota HJ, Alger JC, Shafer L (2013) Converting algal triglycerides to diesel and HEFA jet fuel fractions. Energ Fuel 27(2):985–996. https://doi.org/10.1021/ef301977b

    Article  Google Scholar 

  28. Yeh TM, Dickinson JG, Franck A, Linic S, Thompson LT, Savage PE (2013) Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. J Chem Technol Biotechnol 88(1):13–24. https://doi.org/10.1002/jctb.3933

    Article  Google Scholar 

  29. Kuchling T, Wollmerstädt H, Endisch M (2013) Hydrierung von Pflanzenölen – Mechanismus und Kinetik. Chemie Ingenieur Technik 85(4):508–511. https://doi.org/10.1002/cite.201200199

    Article  Google Scholar 

  30. Tóth C, Kasza T, Kovács S, Baladincz P, Hancsók J (2009) Investigation of catalytic conversion of vegetable oil. 44th International Petroleum Conference, Bratislava, September 2009

    Google Scholar 

  31. Myllyoja J, Aalto P, Savolainen P, Purola V-M, Alopaeus V, Grönqvist J Process for the manufacture of diesel range hydrocarbons patent US 8,212,094 B2

    Google Scholar 

  32. Kasza T, Hancsók J (2011) Isomerization of paraffin mixtures produced from sunflower oil. Hung J Ind Chem 39(3):363–368.

    Google Scholar 

  33. Bertelli C Next steps in biofuel development and deployment March 2011. Austrailian International Airshow and Aerospace & Defence Exposition Avalon 2011,

    Google Scholar 

  34. Nikander S (2008) Greenhouse gas and energy intensity of product chain. Case transport biofuel. Masterthesis, Helsinki University of Technology

    Google Scholar 

  35. Pearlson MN (2011) A techno-economic and environmental assessment of hydroprocessed renewable distillate fuels. Master Thesis, Massachusetts Institute of Technology [MIT]

    Google Scholar 

  36. Coppola E, Red C JR, Nana S (2014) High rate reactor system patent US 2014/0109465 A1

    Google Scholar 

  37. Li L, Coppola E, Rine J, Miller JL, Walker D (2010) Catalytic hydrothermal conversion of triglycerides to non-ester biofuels. Energ Fuel 24(2):1305–1315. https://doi.org/10.1021/ef901163a

    Article  Google Scholar 

  38. Applied Research Associates, Inc (2014). Biofuels isoconversion process. Applied Research Associates, Inc., Albuquerque http://www.ara.com/fuels/Why-ReadiJet.html Accessed 23 Mar 2014

  39. Kröger V (2013) NesteOil – the only way is forward, 15 January 2013. Presentation

    Google Scholar 

  40. IATA (2013) IATA 2013 report on alternative fuels, IATA, Montreal

    Google Scholar 

  41. Garcia F (2011) Amyris-total alternative aviation fuel partnership Washington. Caafi General Meeting and Expo 2011,

    Google Scholar 

  42. Blommel PG, Cortright RD (2008) Production of conventional liquid fuels from sugars. Virent Energy Systems Inc. http://biofuelstp.eu/viewreport.php?viewid=66. Accessed 26 Mar 2014

  43. Bauldreay J Catalytic conversion of sugars to create bio jet fuels – virent/shell. Aireg workshop “technologies of fuel conversion”, 18 June 2012

    Google Scholar 

  44. Kania J, Blommel PG, Woods E, Dally B, Lyman W, Cortright RD (2013). Production of distillate fuels from biomass-derived polyoxygenates patent US 2013/0263498 A1

    Google Scholar 

  45. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562. https://doi.org/10.1126/science.1187936

    Article  Google Scholar 

  46. Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41(5):1001–1014. https://doi.org/10.1016/j.procbio.2005.12.007

    Article  Google Scholar 

  47. Amyris (2014) Total: Amyris – news – total and Amyris renewable jet fuel ready for use in commercial aviation, Amyris, Emeryville

    Google Scholar 

  48. Stöckel R (2014) Total: aireg meeting. E-Mail

    Google Scholar 

  49. Schmitz N, Henke J, Klepper G (2009) Biokraftstoffe. Eine vergleichende Analyse. FNR

    Google Scholar 

  50. Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels, Bioprod Bioref 5(1):93–114. https://doi.org/10.1002/bbb.256

    Article  Google Scholar 

  51. Griffin DW, Schultz MA (2012) Fuel and chemical products from biomass syngas: a comparison of gas fermentation to thermochemical conversion routes. Environ Prog Sustain 31(2):219–224. https://doi.org/10.1002/ep.11613

    Article  Google Scholar 

  52. Dutta A, Talmadge M, Hensley J (2011) Process design and economics for conversion of lignocellulosic biomass to ethanol. Thermochemical pathway by indirect gasification and mixed alcohol synthesis, NREL/TP-5100-51400. National Renewable Energy Laboratory, Golden

    Google Scholar 

  53. Wollrab A (2009) Organische Chemie. Eine Einführung für Lehramts- und Nebenfachstudenten, 2009th edn. Springer, Berlin

    Google Scholar 

  54. Breitmaier E, Jung G, Breitmaier-Jung (2005) Organische Chemie. Grundlagen, Stoffklassen, Reaktionen, Konzepte, Molekülstruktur; zahlreiche Formeln, Tabellen, 5th edn. Thieme, Stuttgart

    Google Scholar 

  55. Hull A (2012) Technology for the production of fully synthetic aviation fuels, diesel and gasoline. Presentation held at the Solakonferansen 2012

    Google Scholar 

  56. Weiss KR (2013) Commercialization of a renewable aviation fuel industry. Brasil, Sao Paulo, 28 June 2013 Ethanol Summit 2013

    Google Scholar 

  57. Holmgren J (2013) Innovative use of industrial waste gases to produce sustainable fuels & chemicals. Presentation held at the Avalon Air Show 2013 Geelong, 27 February 2013

    Google Scholar 

  58. Johnston G (2013) Alcohol to Jet (AtJ). Paris Air Show 2013

    Google Scholar 

  59. Fachagentur Nachwachsende Rohstoffe e.V (ed) (2014) Leitfaden Biogasaufbereitung und -einspeisung, 5th edn. Fachagentur für Nachwachsende Rohstoffe, Gülzow

    Google Scholar 

  60. Fachagentur Nachwachsende Rohstoffe e.V (ed) (2013) Leitfaden Biogas. Von der Gewinnung zur Nutzung [Bioenergie], 6th edn. biogas.fnr.de, Gülzow

    Google Scholar 

  61. European Biogas Association EBA (2014) EBA Biogas Report 2014 is published! European Biogas Association, Bruxelles

    Google Scholar 

  62. de Klerk A (2011) Fischer-tropsch refining, 1st edn. Wiley, Hoboken

    Book  Google Scholar 

  63. Häussinger P, Lohmüller R, Watson AM (2000) Hydrogen, 3. Purification. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  64. Hiller H, Reimert R, Stönner H-M (2011) Gas production, 1. Introduction. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  65. Fischer F, Tropsch H (1923) The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen. Brennstoff-Chem 4:276–285

    Google Scholar 

  66. Janiak C, Klapötke TM, Riedel E, Meyer HJ (2003) Moderne anorganische Chemie. de Gruyter, Berlin

    Google Scholar 

  67. Hamelinck CN, Faaij AP (2002) Future prospects for production of methanol and hydrogen from biomass. J Power Sources 111(1):1–22. https://doi.org/10.1016/S0378-7753(02)00220-3

    Article  Google Scholar 

  68. Steynberg A, Dry M (2004) Fischer-tropsch technology. Stud Surf Sci Catal 152:64–195

    Article  Google Scholar 

  69. Sie ST, Krishna R (1999) Fundamentals and selection of advanced Fischer‐tropsch reactors. Appl Catal A-Gen 186(1):55–70

    Article  Google Scholar 

  70. de Deugd RM, Kapteijn F, Moulijn JA (2003) Trends in Fischer–tropsch reactor technology. Opportunities for structured reactors. Top Catal 26(1–4):29–39. https://doi.org/10.1023/B:TOCA.0000012985.60691.67

    Article  Google Scholar 

  71. Ehrfeld W (1996) Microsystem technology for chemical and biological microreactors. Papers of the workshop on microsystems technology, Mainz, 20–21 February 1995. DECHEMA monographs, vol. 132. VCH, Weinheim

    Google Scholar 

  72. Walter S, Frischmann G, Broucek R, Bergeld M, Liauw M (1999) Fluiddynamische Aspekte in Mikrostrukturreaktoren. Chemie Ingenieur Technik 71:447–455

    Article  Google Scholar 

  73. de Klerk A Fischer-tropsch jet fuel process patent US 2010/0108568 A1, 6 May 2010

    Google Scholar 

  74. Oil & Gas Journal: Sasol to establish GTL plant in Uzbekistan

    Google Scholar 

  75. Shell Global: The world’s largest gas-to-liquids plant is now fully online

    Google Scholar 

  76. Swanson RM (2009) Techno-economic analysis of biomass-to-liquids production based on gasification. Master thesis, Iowa State University

    Google Scholar 

  77. Stevens DJ (2001) Hot gas conditioning: recent progress with larger-scale biomass gasification systems. Update and summary of recent progress

    Google Scholar 

  78. Fulcrum BioEnergy (2014) Sierra bioFuels plant. Fulcrum BioEnergy, Pleasanton

    Google Scholar 

  79. Media B Green Car Congress: KiOR halts cellulosic fuels production at Columbus in Q1 to optimize production; need for R&D to boost yield and cut costs

    Google Scholar 

  80. KiOR (2014): KiOR, Inc. – Production facilities. http://www.kior.com/content/?s=6&s2=56&p=56&t=Production-Facilities. Accessed 11 Jun 2014

  81. Biofuels Digest (2015) Judge allows KiOR Columbus plant to sell off pieces with REG and chipmakers first up. http://www.biofuelsdigest.com/bdigest/2015/10/05/judge-allows-kior-columbis-plant-to-sell-off-piece-with-reg-and-chipmakers-first-up/. Accessed 29 Feb 2016

  82. CAAFI (2010) Fuel readiness level. http://www.caafi.org/information/pdf/FRL_CAAFI_Jan_2010_V16.pdf. Accessed 2 Mar 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Neuling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Neuling, U., Kaltschmitt, M. (2018). Conversion Routes from Biomass to Biokerosene. In: Kaltschmitt, M., Neuling, U. (eds) Biokerosene. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53065-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53065-8_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53063-4

  • Online ISBN: 978-3-662-53065-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics