Skip to main content

“New” Oil Plants and Their Potential as Feedstock for Biokerosene Production

  • Chapter
  • First Online:
Book cover Biokerosene

Abstract

This paper explores the potential of seven tropical and subtropical oil crops to become serious options as feedstock for the production of biokerosene. By means of descriptive and evaluative criteria, the plants are analytically compared in order to determine their potential to reach a large scale production and an economic viability. Utilizing the case study of Acrocomia aculeata (“Macauba”), an analytical framework is created to examine economic, social, and environmental factors that play a role in cultivation efforts. Based on this analysis, the paper draws conclusions regarding the development of sustainable business models for alternative oil crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Agus F, Gunarso P, Sahardjo BH, Harris N, van Noordwijk M, Killeen TJ (2013) Historical CO2 emissions from land use and land use change from the oil palm industry in Indonesia, Malaysia and Papua New Guinea. Roundtable on Sustainable Palm Oil, Kuala Lumpur.

References

  1. IATA (2009) Carbon-neutral growth by 2020. https://www.iata.org/pressroom/pr/Pages/2009-06-08-03.aspx. Accessed 14 Mar 2016

  2. USDA (2013) Oilseeds: world markets and trade. USDA, Washington

    Google Scholar 

  3. May-Tobin et al (2012) Recipes for success. Union of Concerned Scientists. Cambridge

    Google Scholar 

  4. UNEP (2011) Oil palm plantations: threats and opportunities for tropical ecosystems. UNEP, Nairobi

    Google Scholar 

  5. Schrevel A et al (2008) Oil-palm estate development in Southeast Asia: consequences for peat swamp forests and livelihoods in Indonesia. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  6. Achten WMJ et al (2010) Towards domestication of Jatropha curcas. Biofuels 1 (1):91–107

    Article  Google Scholar 

  7. Bahrs E et al (2012) Globale Analyse und Abschätzung des Biomasse-Flächennutzungspotentials. https://www.uni-hohenheim.de/i410b/download/publikationen/Globale%20Biomassepotenziale%20_%20FNR%2022003911%20Zwischenbericht%202012.pdf. Accessed 14 Mar 2016

  8. Teixeira E (1996) Acrocomia aculeata. In: Tassaro H (ed) Frutas no Brasil. Empresa das Artes, São Paulo

    Google Scholar 

  9. Carlos Hernández, Alberto Mieres Pitre (abril 2005) Extracción y purificación del aceite de la almendra del fruto de la palma de corozo (Acrocomia aculeata) Revista INGENIERÍA UC 12(1): 68–75, Universidad de Carabobo Valencia, Venezuela

    Google Scholar 

  10. da Silva CAS et al (2010) Influência da temperatura sobre o equilíbrio líquido-líquido de sistemas compostos por biodiesel de macaúba (Acrocomia aculeata) + etanol + água. COBEQ/EBA/CBTERMO – 18°Congresso Brasileiro de Engenharia Química.

    Google Scholar 

  11. Kurki A et al (2006) Biodiesel. The sustainability dimensions. https://attra.ncat.org/attra-pub/download.php?id=312. Accessed 14 Mar 2016

  12. Bohn E (2009) Tablero de comando para la promoción de los biocombustibles en Paraguay. Comisión Económica para América Latina y el Caribe (CEPAL), Colección Documentos de Proyectos, Naciones Unidas, Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) y financiado por el Ministerio Federal de Cooperación Económica y Desarrollo de Alemania (BMZ)

    Google Scholar 

  13. Murta L (2011) Macauba Palm as a Source of Biofuels: the potential of Acrocomia Aculeata in the state of Minas Gerais. n.p

    Google Scholar 

  14. Martins RC (2007) Biodiversidade do bioma Cerrado, http://.semark.df.gov.br/semarh/site/cafuringa/Sec04/Sec_04_08.htm. Accessed 14 Mar 2016

  15. Zuchowski W et al (2007) Tropical plants of Costa Rica: a guide to native and exotic flora. Cornell University Press, New York

    Google Scholar 

  16. Averdunk K et al (2013) Macauba – sustainable palm oil. Results of the feasibility study of the Leuphana University of Lüneburg. http://www.leuphana.de/fileadmin/user_upload/portale/inkubator/download/Summary_Macauba_Feasibility_Study.pdf. Accessed 14 Mar 2016

  17. Ofori DA et al (2011) Germination requirements of Allanblackia parviflora seeds and early growth of seedlings. New Forest 41:337–348

    Article  Google Scholar 

  18. Atangana AR et al (2006) Domestication of Allanblackia floribunda: amenability to vegetative propagation. Forest Ecol Manag 237(1–3):246–251

    Article  Google Scholar 

  19. Adubofuor J et al (2013) Nutrient composition of Allanblackia Paviflora seed kernels and oil compared with some plant fats and oils and application of the oil in soap preparation. J Cereal Oilseeds 4 (1): 1–9

    Article  Google Scholar 

  20. Hermann M (2009) The impact of the European Novel Food Regulation on trade and food innovation based on traditional plant foods from developing countries. Food Policy 34: 499–507

    Article  Google Scholar 

  21. Jamnadass R et a (2010) Allanblackia, a new tree crop in Africa for the global food industry: market development, smallholder cultivation and biodiversity management. For Trees Livelilhoods 19:251–268

    Article  Google Scholar 

  22. Shrestha RB et al (2007) Relative attractiveness of Allanblackia cultivation in Ghana: farmer’s perceptions and willingness. Novella Partnership Ghana. The Netherlands Development Organisation (SNV), Accra

    Google Scholar 

  23. Munjuga M et al (2008) Allanblackia propagation protocol. World Agroforestry Centre, Nairobi

    Google Scholar 

  24. Dawson IK et al (2007) Mainstreaming biodiversity around threatened biodiversity hotspots in Africa, building on the innovative Allanblackia business. Supporting synthesis for a proposal to the Global Environment Facility. The World Agroforestry Centre, Nairobi

    Google Scholar 

  25. May PH et al (1985) Babassu palm in the agroforestry systems in Brazil’s Mid-North region. Agroforest Syst 3 (3):275–295

    Article  Google Scholar 

  26. Silva FC et al (2010) Production of biodiesel from babassu oil using methanol-ethanol blends. Eclética Química 35(1):47–54

    Article  Google Scholar 

  27. Heuzé V et al (2015a) Babassu (Attalea speciosa), Feedipedia. http://feedipedia.org/node/30. Accessed 14 Mar 2016

  28. Oliveira JS et al (2006) Determination of methyl ester contents in biodiesel blends by FTIR-ATR and FTNIR spectroscopies. Talanta 69: 1278–1284

    Article  Google Scholar 

  29. Ferreira MEM et al (2014) Energy evaluation of the production process of babassu biodiesel synthesized via methanolic and ethanolic route. Int J Appl Sci Technol 4 (3):204–219

    Google Scholar 

  30. BBC (2008) Airline in first biofuel flight. http://news.bbc.co.uk/2/hi/7261214.stm. Accessed 14 Mar 2016

  31. Carvalho MG et al (2007) Regulatory mechanism for biomass renewable energy in Brazil, a case study of the Brazilian babassu oil extraction industry. Energy 32:999–1005

    Article  Google Scholar 

  32. Paiva, Eduardo José Mendes de (Catálogo USP)Nome completoEduardo José Mendes de PaivaUnidade da USPEscola de Engenharia de Lorena Área do ConhecimentoProcessos Catalíticos e Biocatalíticos Imprenta; Lorena.

    Google Scholar 

  33. Silva MLCP et al (2011) Evaluation of biodiesel production from babassu oil and ethanol applying alkaline transesterification under ultrasonic technology. World Renewable Energy Congress, Brighton

    Google Scholar 

  34. Azad AK et al (2015) Prospect of moringa seed oil as a sustainable biodiesel fuel in Australia. A review. Procedia Engineer 105:601–606

    Article  Google Scholar 

  35. Foidl N et al (2001) The potential of Moringa oleifera for agricultural and industrial uses. http://miracletrees.org/moringa-doc/the_potential_of_moringa_oleifera_for_agricultural_and_industrial_uses.pdf. Accessed 14 Mar 2016

  36. Price ML (2007) The moringa tree. http://miracletrees.org/moringa-doc/ebook_moringa.pdf. Accessed 14 Mar 2016

  37. Bosch CH (2004) Moringa oleifera. In: Grubben GJH and Denton OA (eds) Plant resources of tropical Africa, volume 2, Vegetables Flora / Fauna. Earthprint Limited, Wageningen

    Google Scholar 

  38. Azam MM et al (2005) Properties and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenerg 29:293–302

    Article  Google Scholar 

  39. Heuzé V et al (2016) Moringa (Moringa oleifera), Feedipedia. http://feedipedia.org/node/124. Accessed 15 Mar 2016.

  40. Mbeza HF et al (2008) Optimization of oil extraction from Moringa oleifera and Jatropha curcus using Ram and Spindle Presses, Lilongwe

    Google Scholar 

  41. Orwa C et al (2009) Agroforestree database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Nairobi

    Google Scholar 

  42. Heroor SH et al (2013) Production of bio-fuel from crude neem oil and its performance. Int J Environ Eng Manage 4(5):425–432

    Google Scholar 

  43. Ali MH et al (2013) Biodiesel from neem oil as an alternative fuel for diesel engine. Procedia Engineer 56: 625–630

    Article  Google Scholar 

  44. Karmee SK et al (2005) Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresource Technol 96(13): 1425–1429.

    Article  Google Scholar 

  45. Naik M et al (2007) Production of biodiesel from high free fatty acid Karanja oil. Biomass Bioenerg 32(4):354–357

    Article  Google Scholar 

  46. Li C et al (2015) Production of biodiesel using a vegetable oil from Swida wilsoniana fruits. Period Polytech Chem 59(4):283–287

    Article  Google Scholar 

  47. El Bassam N (2010) Handbook of bioenergy crops. A complete reference to species, development and applications, 1 edn. Routledge, London

    Book  Google Scholar 

  48. Heuzé V et al (2015) Neem (Azadirachta indica), Feedipedia. http://feedipedia.org/node/182. Accessed 14 Mar 2016

  49. Roscoe R et al (2007) Análise de viabilidade técnica de oleaginosas para produção de biodiesel em Mato Grosso do Sul. Revista Política Agrícola 1

    Google Scholar 

  50. Motoike S et al (2009) The potential of macaw palm (Acrocomia aculeata) as source of biodiesel in Brazil. Int J Chem Eng 1(6):632–635

    Google Scholar 

  51. Oberländer D et al (2011) Acrocomia ssp. als Energie- und Rohstofflieferant. http://www.acrocomiasolutions.com/uploads/pdf/acrocomia_th_2011.pdf. Accessed 14 Mar 2016

  52. Slaper T et al (2011) The triple bottom line: what is it and how does it work? Indiana Bus Rev 86(1):4–8

    Google Scholar 

  53. Pott A et al (1994) Plantas do Pantanal. Empresa Brasileira de Pesquisa Agropecuária. Centro de Pesquisa Agropecuária do Pantanal. EMBRAPA-SPI, Corumbá

    Google Scholar 

  54. Villanueva C et al (2008) Disponibilidad de Brachiaria brizantha en potreros con diferentes niveles de cobertura arbórea en el trópico subhumedo de Costa Rica., Grupo Ganadería y Manejo del Medio Ambiente, Centro de Agricultura Tropical de investigación y Enseñanza. Turrialba, Costa Rica

    Google Scholar 

  55. Duarte ID et al (2010) Variação da composição de ácidos graxos dos óleos de polpa e amêndoa de macaúba; Embrapa Agroindústria de Alimentos and Embrapa Cerrados, Planaltina

    Google Scholar 

  56. SECOM (2010) Brazil-insights series: agriculture and livestock. Secretariat of Social Communication, Sao Paolo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Zelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Zelt, T. (2018). “New” Oil Plants and Their Potential as Feedstock for Biokerosene Production. In: Kaltschmitt, M., Neuling, U. (eds) Biokerosene. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53065-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53065-8_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53063-4

  • Online ISBN: 978-3-662-53065-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics