Skip to main content

Camelina – An Alternative Oil Crop

  • Chapter
  • First Online:
Biokerosene

Abstract

Camelina sativa [L.] is an ancient oilseed which was grown extensively in Russia, the Middle East, Scandinavia and Europe up to the 1950’s. It produces an oil with potential as a low-input biofuels feedstock and which is known to have high levels of fatty acids beneficial for humans. The residual meal, after oil extraction, has various uses such as a protein source in food, in fodder, in aquaculture and as a fertilizer. Relatively tolerant of drought and frost, it is resistant to many pests and diseases that plague other oilseed crops. It usually costs less to grow than other oilseeds, is considered to be a short season crop and is adaptable to different seasonal and edaphic conditions. The production of biokerosene from camelina oil has been proven and its use in a blend for aviation has been assessed successfully in several test flights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bernardo A, Howard-Hildige R, O’Connell A, Nichol R, Ryan J, Rice B, Roche E, Leahy JJ (2003) Camelina oil as a fuel for diesel transport engines. Ind Crop Prod 17:191–197

    Article  Google Scholar 

  2. Fröhlich A, Rice B (2005) Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind Crop Prod 21:25–31

    Article  Google Scholar 

  3. Toncea I, Necseriu D, Prisecaru T, Balint L-N, Ghilvacs M-I, Popa M (2013) The seed’s and oil composition of Camelia – first romanian cultivar of Camelina (Camelina sativa, L. Crantz). Rom Biotech Lett 18 (5):8594–8602

    Google Scholar 

  4. http://plants.usda.gov

  5. Francis A, Warwick SI (2009) The biology of Canadian weeds. 142. Camelina alyssum (Mill.) Thell.; C. microcarpa Andrz. Ex DC.; C. sativa (L.) Crantz. Can J Plant Sci 89:791–810

    Article  Google Scholar 

  6. Putnam DH, Budin JT, Field LA, Breene WM (1993) Camelina: a promising low-input oilseed. In: Janick J, Simon JE, (eds) New crops.Wiley, New York, pp 314–322

    Google Scholar 

  7. Klinkenberg B (ed) (2008) E-Flora BC: electronic atlas of the plants of British Columbia [eflora.bc.ca]. Lab for Advanced Spatial Analysis, Department of Geography, University of British Columbia, Vancouver

    Google Scholar 

  8. Ehrensing DT, Guy SO (2008) Camelina. Oregon State University Extension Service, Corvallis. EM 8953-E. Retrieved 22 Aug 2015

    Google Scholar 

  9. Campbell MC, Rossi AF, Erskine W (2013) Camelina (Camelina sativa (L.) Crantz): Agronomic potential in Mediterranean environments and diversity for biofuel and food uses. Crop Pasture Sci 64(4):388–398

    Article  Google Scholar 

  10. Groeneveld JH, Klein A-M (2014) Pollination of two oil-producing plant species: Camelina (Camelina sativa L. Crantz) and pennycress (Thlaspi arvenseL.) double-cropping in Germany. BioenergConservBiodivers 6(3):242–251

    Google Scholar 

  11. Knorzer KH (1978) Evolution and spread of Gold of Pleasure (Camelina sativa S.L.). Ber Deut Bot Ges 91:187–195

    Google Scholar 

  12. Hjelmqvist H (1979) Beitrage zur Kenntnis der prahistorishen Nutzpflanzen in Schweden (German). Opera Bot 47:34–57

    Google Scholar 

  13. Ghamkhar K, Croser J, Aryamanesh N, Campbell M, Kon’kova N, Francis C (2010) Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53:558–567

    Article  Google Scholar 

  14. Zubr J (1997) Oil-seed crop: Camelina sativa. Ind Crop Prod 6:113–119

    Article  Google Scholar 

  15. Walsh D, Sanderson D, Hall LM, Mugo S, Hills MJ (2014) Allelopathic effects of Camelina (Camelina sativa) and canola (Brassica napus) on wild oat, flax and radish. Allelopathy J 33(1):83–95

    Google Scholar 

  16. CBIF (2003) Canadian Biodiversity Information Facility. http://www.cbif.gc.ca/. Accessed Apr 2016.

  17. Plessers AG, McGregor WG, Carson RB, Nakoneshny W (1962) Species trials with oilseed plants II. Camelina. Can J Soil Sci 42:452–459

    Google Scholar 

  18. Robinson RG (1987) Camelina: a useful research crop and a potential oilseed crop. Minnesota Agr. Expt Sta Bul 179. Report No. 579. Retrieved from the University of Minnesota Digital Conservancy. http://hdl.handle.net/11299/141546

  19. Grady K, Thandiwe N (2010) Camelina production. South Dakota State University, Extension Extra, ExEx8167, May 2010

    Google Scholar 

  20. Crowley JG, Fröhlich A (1998) Factors affecting the composition and use of Camelina. Teagasc Project Report No. 4319, Crop Research Centre, Teagasc. Dublin

    Google Scholar 

  21. Sintim HY, Zheljazkov VD, Obour AK, Garcia y Garcia A, Foulke TK (2016) Evaluating agronomic responses of Camelina to seeding date under rain-fed conditions. Agron J 108:349–357

    Article  Google Scholar 

  22. Dobre P, Jurcoane S, Matei F, Stelica C, Faracas N, Moraru AC (2014) Camelina sativa as a double crop using the minimal tillage system. Rom Biotech Lett 19(2)

    Google Scholar 

  23. McVay KA, Lamb PF (2008) Camelina production in Montana. Montana State University Extension, MontGuide, MT200701AG Revised 3/08

    Google Scholar 

  24. Chen C, Bekkerman A, Afshar RK, Neill K (2015) Intensification of dryland cropping systems for bio-feedstock production: Evaluation of agronomic and economic benefits of Camelina sativa. Ind Crop Prod 71:114–121

    Article  Google Scholar 

  25. Crowley JG (1999) Evaluation of Camelina sativa as an Alternative Oilseed Crop. Crops Research Centre, Oak Park, Carlow. Teagasc, Dublin

    Google Scholar 

  26. Jha P, Stougaard RN (2013) Camelina (Camelina sativa) tolerance to selected preemergence herbicides. Weed SciSoc Am 27(4):712–717

    Google Scholar 

  27. Hulbert S, Guy S, Pan B, Paulitz T, Schillinger B, Wysocki D, Sowers K (2011) Camelina production in the dryland Pacific Northwest. Washington State University, Extension Fact Sheet • FS073E

    Google Scholar 

  28. Hunter J, Roth G (2010) Camelina production and potential in Pennsylvania, Agronomy Facts 72. College of Agricultural Sciences, Crop and Soil Sciences, Pennsylvania State University, State College

    Google Scholar 

  29. Lovett JV (1985) Defensive stratagems of plants, with special reference to Allelopathy. Pap. proc. R. Soc. Tasmania 119:1985

    Google Scholar 

  30. Urbaniak SD Caldwell CD Zheljazkov VD Lada R Luan L (2008b) The effect of seeding rate, seeding date and seeder type on the performance of Camelina sativa L. in the Maritime Provinces of Canada. Can J Plant Sci 88:501–508

    Article  Google Scholar 

  31. Johnson EN, Falk K, Klein-Gebbinck H, Lewis L, Malhi S, Leach D, Shirtliffe S, Holm FA, Sapsford K, Hall L, Topinka K, May W, Nybo B, Sluth D, Gan Y, Phelps S (2011) Agronomy of Camelina sativa and Brassica carinata. Western Applied Research Corporation (WARC), Saskatchewan, Canada Final Report

    Google Scholar 

  32. Obour KA, Sintim YH, Obeng E, Jeliazkov DV (2015) Oilseed Camelina (Camelina sativa L Crantz): production systems, prospects and challenges in the USA great plains. Adv Plants Agric Res 2(2):00043. https://doi.org/10.15406/apar.2015.02.00043

    Article  Google Scholar 

  33. Enjalbert JN, Johnson JJ (2009) Guide for producing dryland Camelina in Eastern Colorado Fact Sheet No. 0.709

    Google Scholar 

  34. DuByne D (2016) Oilseed crops food & energy. Myanmar Times, http://www.oilseedcrops.org/Camelina/. Accessed 24 Apr 2016

  35. Porcher FP (1863) Resources of the Southern fields and forests, medical, economical, and agricultural. Being also a medical botany of the Confederate States; with practical information on the useful properties of the trees, plants, and shrubs. Steam-Power Press of Evans & Cogswell, Richmond [Online]. http://docsouth.unc.edu/imls/porcher/porcher.html. Accessed 19 Oct2009

  36. Gesch RW (2014) Influence of genotype and sowing date on Camelina growth and yield in the north central U.S. Ind Crop Prod 54(March): 209–215

    Article  Google Scholar 

  37. Gugel RK, Falk KC (2006) Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can J Plant Sci 86:1047–1058

    Article  Google Scholar 

  38. Berti M, Wilckens R, Fischer S, Solis A, Johnson B (2011) Seeding date influence on Camelina seed yield, yield components, and oil content in Chile. Ind Crop Prod 34:1358–1365

    Article  Google Scholar 

  39. Jackson G Professor of agronomy western triangle Ag. Research Center, Conrad (2008) Response of Camelina to nitrogen, phosphorous, and sulfur, February 2008 Number 49

    Google Scholar 

  40. Johnson EN, Falk K, Klein-Gebbinck H, Lewis L, Vera C, Shirtliffe S, Gan Y, Hall L, Topinka K, Nybo B, Sluth D, Bauche C, Phelps S (2008) Agronomy of Camelia sativa. Western Applied Research Corporation (WARC), Saskatchewan, Canada Annual report

    Google Scholar 

  41. Urbaniak SD, Caldwell CD, Zheljazkov VD, Lada R, Luan L (2008a) The effect of cultivar and applied Nitrogen on the performance of Camelina sativa L. in the Maritime Provinces of Canada. Can J Plant Sci 88(1): 111–119

    Article  Google Scholar 

  42. Malhi SS, Johnson EN, Hall LM, May WE, Phelps S, Nybo B (2014) Effect of nitrogen fertilizer application on seed yield, N uptake, and seed quality of Camelina sativa. Can J Soil Sci 94:3547

    Article  Google Scholar 

  43. Hansen LN (1998) Intertribal somatic hybridization between rapid cycling Brassica oleracea L. and Camelina sativa (L.) Crantz. Euphytica 104 (3):173–179

    Article  Google Scholar 

  44. Li H, Barbetti MJ, Sivasithamparam K (2005) Hazard from reliance on cruciferous hosts as sources of major gene-based resistance for managing blackleg (Leptosphaeria maculans) disease. Field Crop Res 91:185–198. https://doi.org/10.1016/j.fcr.2004.06.006

    Article  Google Scholar 

  45. Fleenor RA (2011) Plant Guide for Camelina (Camelina sativa). USDA-Natural Resources Conservation Service, Spokane

    Google Scholar 

  46. Bramm A, Dambroth M, Schulte-Kome S (1990) Analysis of yield components of linseed, false flax, and poppy. Landbauforsch Volk 40: 107–114

    Google Scholar 

  47. Roseberg RJ, Shuck RA (2009) Growth, seed yield, and oil production of spring Camelina sativa in response to irrigation rate, seeding date, and nitrogen rate, in the Klamath Basin, 2009. Agronomy Research in the Klamath Basin 2009 Annual Report. Klamath Basin Research & Extension Center Annual Research Report

    Google Scholar 

  48. Johnson J, Enjalbert N, Schneekloth J, Helm A, Malhotra R, Coonrod D (2009) Development of oilseed crops for biodiesel production under Colorado Limited Irrigation Conditions. Final Report to the Colorado Water Institute, Fort Collins

    Google Scholar 

  49. Korsrud GO, Keith MO, Bell JM (1978) A comparison of the nutritional value of Crambe and Camelina seed with egg and casein. Can J Animal Sci 58: 493– 499

    Google Scholar 

  50. Lange RW, Schumann M, Petrika H, Busch H, Marquand R (1995) Glucosinolates in linseed dodder. Fat Sci Tech 97(4):146– 152

    Google Scholar 

  51. Schuster A, Friedt W (1998) Glucosinolate content and composition as parameters of quality of Camelina seed. Ind Crop Prod 7:297–302

    Article  Google Scholar 

  52. Agegnehu M, Honermeier B (1997) Effects of seeding rates and nitrogen fertilization on seed yield. Seed quality and yield components of false flax (Camelina sativa Crtz.). Bodenkultur 4:15–21

    Google Scholar 

  53. Francis CM, Campbell MC (2003) New high quality oil seed crops for temperate and tropical Australia. RIRDC Publication No. 03/045 (RIRDC Project No. UWA-47A). ix + 27pp

    Google Scholar 

  54. Roseberg RJ, Bentley RA (2011) Growth, seed yield, and oil production of spring Camelina sativa in response to irrigation rate and harvest method, in the Klamath Basin 2011. Klamath Basin Research & Extension Center Annual Research Report

    Google Scholar 

  55. Masella P, Martinelli T, Galasso I (2014) Agronomic evaluation and phenotypic plasticity of Camelina sativa growing in Lombardia, Italy. Crop Pasture Sci 65(5):453–460

    Article  Google Scholar 

  56. Budin JT, Breene WM, Putnam DH (1995) Some compositional properties of Camelina (Camelina sativa L Crantz) seeds and oils. J Am Oil Chem Soc 72: 309–315

    Article  Google Scholar 

  57. Katar D (2013) Determination of fatty acid composition on different false flax (Camelina sativa (L.) Crantz) Genotypes under Ankara ecological conditions. Turk J Field Crops 18(1): 66–72

    Google Scholar 

  58. Gunstone FD (1958) Introduction to the chemistry of fats and fatty acids Chapman and Hall, London (2nd edn, 1967)

    Google Scholar 

  59. http://www.scientificpsychic.com/fitness/fattyacids1.html

  60. Calais P, Clark AR (2007) Waste vegetable oil as a diesel replacement fuel. Western Australian Renewable Fuels Association (WARFA). www.warfa.asn.au/paper.html

  61. Blin J, Brunschwig C, Chapuis A, Changotade O, Sidibe S, Noumi E, Girardet P (2013). Characteristics of vegetable oils for use as fuel in stationary diesel engines – towards specifications for a standard in West Africa. Renew Sust Energ Rev 22: 580–597.

    Article  Google Scholar 

  62. Abramovic H, Abram V (2005) Physio-chemical properties, Composition and oxidative stability of Camelina sativa oil. Food Technol, Biotechnol 43(1): 63–70

    Google Scholar 

  63. Dubois V, Breton S, Linder M, Fanni J, Parmentier M (2007) Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur J Lipid Sci Technol 109: 710–732

    Article  Google Scholar 

  64. Ole World Oils, Idaho (2011) http://camelinagold.com

  65. Council of the European Union (1976) Council directive 76/621/EEC. Official Journal of the European Communities No. L 202/35

    Google Scholar 

  66. Davidson C, Newes E, Schwab A, Vimmerstedt L (2014) An overview of aviation fuel markets for biofuels stakeholders. Technical Report NREL/TP-6A20–60254. National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  67. Shonnard DR, Williams L, Kalnes TN (2010) Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ Prog Sustainable Energy 29:382–392 https://doi.org/10.1002/ep.10461

    Article  Google Scholar 

  68. Llamast A, Al-Lal A-M, Hernandez M, Lapuerta M, Canoira L (2012) Biokerosene from Babassu and Camelina Oils: production and properties of their blends with fossil kerosene. Energ Fuel 26(9):5968–5976

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Campbell, M. (2018). Camelina – An Alternative Oil Crop. In: Kaltschmitt, M., Neuling, U. (eds) Biokerosene. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53065-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53065-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53063-4

  • Online ISBN: 978-3-662-53065-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics