Skip to main content

L3.1 Bewegung fester Partikel in Gasen und Flüssigkeiten

  • Chapter
  • First Online:
VDI-Wärmeatlas

Part of the book series: Springer Reference Technik ((VDISR))

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 989.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Diese Untersuchungen wurden durch die Deutsche Forschungsgemeinschaft (DFG) unter der Zuwendung Nr. SO 204/42-1 gefördert.

Literatur

  1. Sommerfeld, M., van Wachem, B., Oliemans, R.: Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC European Research Community on Flow, Turbulence and Combustion (2008). ISBN:978-91-633-3564-8

    Google Scholar 

  2. Crowe, C.T. (Hrsg.): Multiphase Flow Handbook. CRC Press/Taylor & Francis Group, Boca Raton (2006)

    MATH  Google Scholar 

  3. Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M., Tsuji, Y.: Multiphase flows with Droplets and Particles (Second Edition). CRC Press, Boca Raton (2012)

    Google Scholar 

  4. Sommerfeld, M.: Modellierung und numerische Berechnung von partikelbeladenen Strömungen mit Hilfe des Euler/Lagrange-Verfahrens. Berichte aus der Strömungsmechanik. Shaker Verlag, Aachen (1996)

    Google Scholar 

  5. Basset, A.B..: On the motion of a sphere in a viscous liquid. Phil. Trans. R. Soc. A. A179, 43–69 (1888)

    MATH  Google Scholar 

  6. Boussinesq, J.V.: Sur la resistance d’une sphere solide. C.R. Hebd. Seanc. Acad. Sci. Paris. 100, 935 (1885)

    MATH  Google Scholar 

  7. Oseen, C.W.: Hydromechanik, S. 132. Akademische Verlagsgemeinschaft, Leipzig (1927)

    Google Scholar 

  8. Tchen, C.-M.: Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. Dissertation, Technische Hochschule Delft, Martinus Nijhoff, The Hague (1947)

    Google Scholar 

  9. Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889 (1983)

    MATH  Google Scholar 

  10. Hjelmfelt Jr., A.T., Mockros, L.F.: Motion of discrete particles in a turbulent fluid. Appl. Sci. Res. 16, 149–161 (1966)

    Google Scholar 

  11. Tenneti, S., Subramaniam, S.: Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46, 199–230 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Stokes, G.G.: On the effect of the internal frictions of fluids on the motion of pendulums. Trans. Cambr. Phil. Soc. 9, 8–106 (1851)

    Google Scholar 

  13. Schlichting, H., Gersten, K.: Grenzschicht-Theorie, 10., überarb. Aufl. Springer Verlag, Berlin (2006)

    Google Scholar 

  14. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Academic, New York (1978)

    Google Scholar 

  15. Schiller, L., Naumann, A.: Über die grundlegende Berechnung bei der Schwerkraftaufbereitung. Ver. Deut. Ing. 44, 318–320 (1933)

    Google Scholar 

  16. Torobin, L.B., Gauvin, W.H.: The drag coefficient of single spheres moving in steady and accelerated motion in a turbulent fluid. AICHE J. 7, 615–619 (1961)

    Google Scholar 

  17. Uhlherr, P.H.T., Sinclair, C.G.: The effect of free stream turbulence on the drag coefficient of spheres. Proc. Chem. 1, 1–13 (1970)

    Google Scholar 

  18. Bagchi, P., Balachandar, S.: Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15, 3496–3513 (2003)

    MATH  Google Scholar 

  19. Sawatzki, O.: Über den Einfluß der Rotation und der Wandstöße auf die Flugbahn kugeliger Teilchen im Luftstrom. Dissertation, University of Karlsruhe (1961)

    Google Scholar 

  20. Hölzer, A., Sommerfeld, M.: Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput. Fluids 38, 572–589 (2009)

    Google Scholar 

  21. Haider, A., Levenspiel, O.: Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 58, 63–70 (1989)

    Google Scholar 

  22. Thompson, T.L., Clark, N.N.: A holistic approach to particle drag prediction. Powder Technol. 67, 57–66 (1991)

    Google Scholar 

  23. Hölzer, A., Sommerfeld, M.: New and simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 184, 371–365 (2008)

    Google Scholar 

  24. Brenner, H.: The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 16, 242–251 (1961)

    Google Scholar 

  25. Faxen, H.: Der Wiederstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Arkiv für Mathematik, Astronomi o. Fysik. 18, 1–52 (1924)

    Google Scholar 

  26. Zeng, L., Najiar, F., Balachandar, S., Fischer, P.: Forces on a finite-size particle located close to a wall in a linear shear flow. Phys. Fluids 21, 033302 (2009)

    MATH  Google Scholar 

  27. Sommerfeld, M.: Particle Motion in Fluids. VDI-Buch: VDI Heat Atlas, S. 1181–1196. Springer Verlag, Berlin/Heidelberg, Part 11 (2010). ISBN:978-3-540-77877-9

    Google Scholar 

  28. Davies, C.N.: Definitive equation for the fluid resistance of spheres. Proc. Phys. Soc. 57, 1060–1065 (1945)

    Google Scholar 

  29. Reeks, M.W., McKee, S.: The dispersive effect of Basset history forces on particle motion in turbulent flow. Phys. Fluids 27, 1573–1582 (1984)

    MATH  Google Scholar 

  30. Odar, F., Hamilton, W.S.: Forces on a sphere accelerating in a viscous fluid. J. Fluid Mech. 18, 302–314 (1964)

    MATH  Google Scholar 

  31. Michaelides, E.E., Roig, A.: A reinterpretation of the Odar and Hamilton data on the unsteady equation of motion of particles. AICHE J. 57, 2997–3002 (2011)

    Google Scholar 

  32. Michaelides, E.E.: A novel way of computing the Basset term in unsteady multiphase flow computations. Phys. Fluids A. 4, 1579–1582 (1992)

    MATH  Google Scholar 

  33. Hinsberg, M.A.T., Ten Thije Boonkamp, J.H.M., Clercx, H.J.H.: An efficient, second order method for the approximation of the Basset history force. J. Comput. Phys. 230, 1465–1478 (2011)

    MATH  Google Scholar 

  34. Löffler, F.: Staubabscheidung. Georg Thieme Verlag, Stuttgart (1988)

    Google Scholar 

  35. Saffman, P.G.: The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385–400 (1965)

    MATH  Google Scholar 

  36. Saffman, P.G.: Corrigendum to: „The lift on a small shere in a slow shear flow“. J. Fluid Mech. 31, 624 (1968)

    Google Scholar 

  37. Mei, R.: An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Int. J. Multiphase Flow 18, 145–147 (1992)

    MATH  Google Scholar 

  38. Dandy, D.S., Dwyer, H.A.: A sphere in shear flow at finite Reynolds number: Effect of shear on particle lift, drag, and heat transfer. J. Fluid Mech. 216, 381–410 (1990)

    Google Scholar 

  39. Sommerfeld, M., Kussin, J.: Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: part II. Integral properties and validation. Int. J. Multiphase Flow 29, 701–718 (2003)

    MATH  Google Scholar 

  40. Rubinow, S.I., Keller, J.B.: The transverse force on spinning sphere moving in a viscous fluid. J. Fluid Mech. 11, 447–459 (1961)

    MathSciNet  MATH  Google Scholar 

  41. Oesterlé, B., Bui Dinh, T.: Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers. Exp. Fluids 25, 16–22 (1998)

    Google Scholar 

  42. Dennis, S.C.R., Singh, S.N., Ingham, D.B.: The steady flow due to a rotating sphere at low and moderate Reynolds numbers. J. Fluid Mech. 101, 257–279 (1980)

    MATH  Google Scholar 

  43. Sawatzki, O.: Strömungsfeld um eine rotierende Kugel. Acta Mech. 9, 159–214 (1970)

    MATH  Google Scholar 

  44. Tang, L., Wen, F., Yang, Y., Crowe, C.T., Chung, J.N., Troutt, T.R.: Self-organizing particle dispersion mechanism in free shear flows. Phys. Fluids A4, 2244–2251 (1992)

    Google Scholar 

  45. Prahl, L., Hölzer, A., Arlov, D., Revstedt, J., Sommerfeld, M., Fuchs, L.: On the interaction between two fixed spherical particles. Int. J. Multiphase Flow 33, 707–725 (2007)

    Google Scholar 

  46. Michaelides, E.E.: Particles, Bubbles & Drops: Their Motion, Heat and Mass Transfer. World Scientific Publishing, Singapore (2006)

    Google Scholar 

  47. Richardson, J.F., Zaki, W.N.: Sedimentation and fluidisation: part I. Trans. Inst. Chem. Eng. 32, 35–53 (1954)

    Google Scholar 

  48. Di Felice, R.: The voidage function for fluid-particle interaction systems. Int. J. Multiphase Flow 29, 153–159 (1994)

    MATH  Google Scholar 

  49. Wen, C.Y., Yu, Y.H.: Mechanics of fluidisation. AICHE J. 62, 100–111 (1966)

    Google Scholar 

  50. Beetstra, R., van der Hoef, M.A., Kuipers, J.A.M.: Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AICHE J. 53, 489–501 (2007)

    Google Scholar 

  51. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Sci. 48, 89–98 (1952)

    Google Scholar 

  52. Schmalfuß, S., Sommerfeld, M.: Numerical and experimental analysis of fluid phase resonance mixers. Chem. Eng. Sci. 173, 570–577 (2017)

    Google Scholar 

  53. Schmalfuß, S., Sommerfeld, M.: Importance of the different fluid forces on particle dispersion in fluid-phase resonance mixers. In: 12th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, SINTEF, Trondheim, Norway, 30.05 – 01.06 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Sommerfeld .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sommerfeld, M. (2019). L3.1 Bewegung fester Partikel in Gasen und Flüssigkeiten. In: Stephan, P., Kabelac, S., Kind, M., Mewes, D., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas. Springer Reference Technik(). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52989-8_88

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52989-8_88

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52988-1

  • Online ISBN: 978-3-662-52989-8

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics