Skip to main content
Book cover

VDI-Wärmeatlas pp 1147–1180Cite as

J5 Spontane Kondensation und Aerosolbildung

  • Chapter
  • First Online:
  • 2549 Accesses

Part of the book series: Springer Reference Technik ((VDISR))

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   989.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Volmer, M.: Kinetik der Phasenbildung. Theodor Steinkopff, Dresden/Leipzig (1939)

    Google Scholar 

  2. Hinds, W.C.: Aerosol Technology. Wiley, New York (1982)

    Google Scholar 

  3. Friedlander, S.K.: Smoke, Dust and Haze. Oxford University Press, New York (2000)

    Google Scholar 

  4. Colburn, A.P., Edison, A.G.: Prevention of fog in cooler-condensers. Ind. Eng. Chem. 33, 457–458 (1941)

    Google Scholar 

  5. Bier, K., Ehrler, F., Treffinger, P., Wright, W.: Spontane Kondensation übersättigter reiner Dämpfe in Nebelkammern. Fortschr.-Ber. VDI, R. 7, Nr. 278. VDI-Verlag, Düsseldorf (1995)

    Google Scholar 

  6. Ehrler, F., Repple, K.H., Schüßler, J., Treffinger, P., Wright, W.: Special cloud chambers for investigations into the time-behaviour of homogeneously nucleated spontaneous condensation. Exp. Fluids 21, 363–373 (1996)

    Google Scholar 

  7. Hechler, C.: Untersuchungen zur spontanen Kondensation in übersättigten Strömungen von Wasserdampf und Entwicklung eines Streulichtverfahrens zur Bestimmung der Tropfengröße und -konzentration. Dissertation, University of Karlsruhe (TH) (1988)

    Google Scholar 

  8. Wegener, P.P.: Gasdynamics of expansion flows with condensation and homogeneous nucleation of water vapor. In: Wegener, P.P. (Hrsg.) Nonequilibrium Flows, 1. Aufl., S. 163–243. Marcel Dekker Inc., New York (1969)

    MATH  Google Scholar 

  9. Zettlemoyer, A.C., Overbeek, J.T.G.: Nucleation Phenomena. Special Issue of Advance in Colloid and Interface Science, Bd. 7. Elsevier Publishing Comp., Amsterdam/Niederlande (1977)

    Google Scholar 

  10. Oxtoby, D.W.: Homogeneous nucleation: theory and experiment. J. Phys. Condens. Matter 4, 7627–7650 (1992)

    Google Scholar 

  11. Vehkamäki, H.: Classical Nucleation Theory in Multicomponent Systems. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  12. Feder, J., Russell, K.C., Lothe, J., Pound, G.M.: Homogeneous nucleation and growth of droplets in vapours. Adv. Phys. 15, 111–178 (1966)

    Google Scholar 

  13. Strey, R., Wagner, P.E., Viisanen, Y.: The problem of measuring homogeneous nucleation rates and the molecular contents of nuclei: progress in the form of nucleation pulse measurements. J. Phys. Chem. 98, 7748–7758 (1994)

    Google Scholar 

  14. Hagen, D.E., Kassner, J.L.: Homogeneous nucleation rate for water. J. Chem. Phys. 81, 1416–1418 (1984)

    Google Scholar 

  15. Schmitt, J.L., Adams, G.W., Zalabsky, R.A.: Homogeneous nucleation of ethanol. J. Chem. Phys. 77, 2089–2097 (1982)

    Google Scholar 

  16. Adams, G.W., Schmitt, J.L., Zalabsky, R.A.: The homogeneous nucleation of nonane. J. Chem. Phys. 81, 5074–5078 (1984)

    Google Scholar 

  17. Sharaf, M.A., Dobbins, R.A.: A comparison of measured nucleation rates with the predictions of several theories of homogeneous nucleation. J. Chem. Phys. 77, 1517–1526 (1982)

    Google Scholar 

  18. Peters, F., Paikert, B.: Nucleation and growth rates of homogeneously condensing water vapor in argon from shock tube experiments. Exp. Fluids 7, 521–530 (1989). Meier, G.E.A., Thompson, P.A. (Hrsg.) Dieselben: Adiabatic Waves in Liquid-Vapor Systems, S. 217–226. Springer, Berlin (1990)

    Google Scholar 

  19. Bier, K., Ehrler, F., Kissau, G., Lippig, V., Schorsch, R.: Homogene Spontankondensation in expandierenden Dampfstrahlen des Kältemittels R 22 bei hohen normierten Drücken. Forsch. Ing.-Wes. 43, 165–175 (1977)

    Google Scholar 

  20. Gyarmathy, G., Meyer, H.: Spontane Kondensation. VDI-Forschungsheft 508. VDI-Verlag, Düsseldorf (1965)

    Google Scholar 

  21. Hedbäck, A.J.W.: Theorie der spontanen Kondensation in Düsen und Turbinen. Mitteilungen Institut für Thermische Turbomaschinen. Juris-Verl., Zürich (1982)

    Google Scholar 

  22. Bier, K., Ehrler, F., Theis, G.: Spontaneous condensation in stationary nozzle flow of carbon dioxide in a wide range of density. In: Meier, G.E.A., Thompson, P.A. (Hrsg.) Proceedings IUTAM Symposium Göttingen 1989: Adiabatic Waves in Liquid-Vapor Systems, S. 129–141. Springer, Berlin (1990)

    Google Scholar 

  23. Bier, K., Ehrler, F., Theis, G.: Comparison of Spontaneous Condensation in Supersaturated Nozzle Flow of Different Refrigerants. In: Proceedings of the International VDI-Seminar ORC-HP-Technology, Zürich. VDI-Berichte 539. VDI-Verlag, Düsseldorf (1984)

    Google Scholar 

  24. Schorsch, R.: Aufbau eines Strömungssystems und Versuche zur homogenen Spontankondensation bei hohen normierten Drücken. Dissertation, University of Karlsruhe (TH) (1976)

    Google Scholar 

  25. Niekrawietz, M.: Experimentelle Untersuchungen und Modellrechnungen zur spontanen Kondensation in Düsenströmungen übersättigter Kohlendioxid/Luft-Gemische. Dissertation, University of Karlsruhe (TH) (1989)

    Google Scholar 

  26. Wölk, J., Strey, R., Heath, C.H., Wyslouzil, B.E.: Empirical function for homogeneous nucleation rates. J. Chem. Phys. 187, 4954–4960 (2002)

    Google Scholar 

  27. Hale, B.N.: Temperature dependence of homogeneous nucleation rates for water: near equivalence of the empirical fit of Wölk and Strey, and the scaled nucleation model. J. Chem. Phys. 122, 204509 (2005)

    Google Scholar 

  28. Brus, D., Zdimal, V., Uchtmann, H.: Homogeneous nucleation rate measurements in supersaturated water vapour II. J. Chem. Phys. 131, 074507 (2009)

    Google Scholar 

  29. Tolman, R.C.: The effect of droplet size on surface tension. J. Chem. Phys. 17, 333–337 (1949)

    Google Scholar 

  30. Flood, H.: Tröpfchenbildung in übersättigten Äthylalkohol-Wasserdampfgemischen. Z. Phys. Chem. A. 170, 286–294 (1934)

    Google Scholar 

  31. Neumann, K., Döring, W.: Tröpfchenbildung in übersättigten Dampfgemischen zweier vollständig mischbarer Flüssigkeiten. Z Phys. Chem. A. 186, 203–226 (1940)

    Google Scholar 

  32. Reiss, H.: The kinetics of phase transitions in binary systems. J. Chem. Phys. 18, 840–848 (1950)

    Google Scholar 

  33. Wilemski, G.: Composition of the critical nucleus in multicomponent vapor nucleation. J. Chem. Phys. 80, 1370–1372 (1984)

    Google Scholar 

  34. Kalikmanov, V.I., van Dongen, M.E.H.: Semi-phenomenological kinetic theory of binary nucleation. Europhys. Lett. 29, 129–134 (1995)

    Google Scholar 

  35. Kwauk, X., Debenedetti, P.G.: Mathematical modelling of aerosol formation by rapid expansion of supercritical solutions in converging nozzle. J. Aerosol Sci. 24(4), 445–469 (1993)

    Google Scholar 

  36. Dingenen R van, Raes F: Ternary nucleation of methane sulphonic acid, sulphuric acid and water vapour. J. Aerosol Sci. 24, 1–17 (1993)

    Google Scholar 

  37. Schaber, K.: Aerosol formation in absorption processes. Chem. Eng. Sci. 50, 1347–1360 (1995)

    Google Scholar 

  38. Wix, A., Brachert, L., Sinanis, S., Schaber, K.: A simulation tool for aerosol formation during sulphuric acid absorption in a gas cleaning process. J. Aerosol Sci. 41, 1066–1079 (2010)

    Google Scholar 

  39. Yue, G.K., Hamill, P.: The homogeneous nucleation of H2SO4–H2O aerosol particles in air. J. Aerosol Sci. 10, 609–614 (1979)

    Google Scholar 

  40. Mirabel, P., Clavelin, J.L.: Experimental study of nucleation in binary mixtures: The nitric acid-water and the sulphuric-water systems. J. Chem. Phys. 68, 5020–5025 (1978)

    Google Scholar 

  41. Kulmala, M., Laaksonen, A.: Binary nucleation of water-sulphuric acid system: Comparison of classical theories with different H2SO4 saturation vapor pressures. J. Chem. Phys. 93, 696–701 (1990)

    Google Scholar 

  42. Junge, C.E.: Atmospheric chemistry. Adv. Geophys. 4, 1–44 (1958)

    Google Scholar 

  43. Ehrig, R., Ofenloch, O., Schaber, K., Deuflhard, P.: Modelling and simulation of aerosol formation by heterogeneous nucleation in gas-liquid contact devices. Chem. Eng. Sci. 57(7), 1151–1163 (2002)

    Google Scholar 

  44. Schaber, K., Körber, J., Ofenloch, O., Ehrig, R., Deuflhard, P.: Aerosol formation in gas-liquid contact devices – nucleation, growth and particle dynamics. Chem. Eng. Sci. 57, 4345–4356 (2002)

    Google Scholar 

  45. Ofenloch, O.: Entstehung und Verhalten von Aerosolen in Gaswaschanlagen. Fortschritt-Berichte VDI, Reihe 3, Nr. 832. VDI-Verlag, Düsseldorf 2005

    Google Scholar 

  46. Wix, A.: Theroretische und experimentelle Untersuchungen zur homogenen und heterogenen Nukleation bei der Säureabsorption in Gas-Flüssigkeits-Kontaktapparaten. Fortschritt-Berichte. VDI 3, 894. VDI-Verlag (2008)

    Google Scholar 

  47. Gretscher, H., Schaber, K.: Aerosol formation by heterogenous nucleation in wet scrubbing processes. Chem. Eng. Process 38, 541–548 (1999)

    Google Scholar 

  48. Wegener, P.P., Mack, M.: Condensation in supersonic and hypersonic wind tunnels. Adv. Appl. Mech. 5, 307–447 (1958)

    MATH  Google Scholar 

  49. Buckle, E.R., Pouring, A.A.: Effects of seeding on the condensation of atmospheric moisture in nozzles. Nature 208, 367–369 (1965)

    Google Scholar 

  50. Dibelius, G., Mertens, K., Pitt, R.: Untersuchungen über die Kondensation in Turbinen zur Trennung von Gasgemischen. VDI-Berichte Nr. 487, S 137–150 (1983)

    Google Scholar 

  51. Oswatitsch, K.: Kondensationserscheinungen in Überschalldüsen. ZAMM. 22, 1–14 (1942)

    Google Scholar 

  52. Gyarmathy, G.: Zur Wachstumsgeschwindigkeit kleiner Flüssigkeitströpfchen in einer übersättigten Atmosphäre. ZAMP. 14, 280–293 (1963)

    MATH  Google Scholar 

  53. Young, J.B.: The condensation and evaporation of liquid droplets in a pure vapour at arbitrary Knudsen number. Int. J. Heat Mass Transf. 34, 1649–1661 (1991)

    Google Scholar 

  54. Young, J.B.: The condensation and evaporation of liquid droplets at arbitrary Knudsen number in the presence of an inert gas. Int. J. Heat Mass Transf. 36, 2941–2996 (1993)

    MATH  Google Scholar 

  55. Peters, F., Paikert, B.: Measurement and interpretation of monodispersed droplets in a shock tube. Int. J. Heat Mass Transf. 37, 293–302 (1994)

    Google Scholar 

  56. Peters, F., Meyer, K.A.J.: Measurement and interpretation of growth of monodispersed droplets suspended in pure vapor. Int. J. Heat Mass Transf. 38, 3285–3293 (1995)

    Google Scholar 

  57. Vesala, T., Kulmala, M., Rudolf, R., Vrtala, A., Wagner, P.E.: Models for condensational growth and evaporation of binary aerosol particles. J. Aerosol Sci. 28, 565–598 (1997)

    Google Scholar 

  58. Schnerr, G.: Homogene Kondensation in stationären transsonischen Strömungen durch Lavaldüsen und um Profile. Universität Karlsruhe (TH), Habilitationsschrift (1986)

    Google Scholar 

  59. Schnerr, G.: 2-D transonic flow with energy supply by homogeneous condensation: Onset condition and 2-D structure of steady nozzle flow. Exp. Fluids 7, 145–156 (1989)

    Google Scholar 

  60. Schnerr, G.H.: Transsonic aerodynamics including strong effects from heat addition. Comput. Fluid. 22(2), 103–106 (1993)

    Google Scholar 

  61. Leidner, P.: Numerische Untersuchung transsonischer Strömungen realer Gase. Fortschr.-Ber. VDI, R. 7, Nr. 288. VDI-Verlag, Düsseldorf (1996)

    Google Scholar 

  62. Avetissian, A.R., Philippov, G.A., Zaichik, L.I.: Effects of turbulence and inlet moisture on two-phase spontaneously condensing flows in transonic nozzles. Int. J. Heat Mass Transf. 51, 4195–4203 (2008)

    MATH  Google Scholar 

  63. Ma, Q.-F., Hu, D.-P., Jiang, J.-S., Qiu, Z.-H.: A turbulent Eulerian multi-fluid model for homogeneous nucleation of water vapour in transonic flow. Int. J. Comput. Fluid Dyn. 23(3), 221–231 (2009)

    MATH  Google Scholar 

  64. Yang, Y., Shen, S.: Numerical simulation on non-equilibrium spontaneous condensation in supersonic steam flow. Int. Commun. Heat Mass Transf. 36, 902–907 (2009)

    Google Scholar 

  65. Ludwig, A.: Untersuchung zur spontanen Kondensation von Wasserdampf bei stationärer Überschallströmung unter Berücksichtigung des Realgasverhaltens. Dissertation University of Karlsruhe (TH) (1975)

    Google Scholar 

  66. Zierep, J.: Strömungen mit Energiezufuhr. G. Braun, Karlsruhe (1990)

    MATH  Google Scholar 

  67. Gyarmathy, G.: Kondensationsstoß-Diagramme für Wasserdampfströmungen. Forsch. Ing.-Wes. 29, 105–114 (1963)

    Google Scholar 

  68. Barschdorff, D.: Verlauf der Zustandsgrößen und gasdynamische Zusammenhänge bei der spontanen Kondensation reinen Wasserdampfes in Laval-Düsen. Forsch. Ing.-Wes. 37, 146–157 (1971)

    Google Scholar 

  69. Schmidt, B.: Beobachtungen zum Verhalten der durch Wasserdampf ausgelösten Störungen in einer Überschall-Windkanaldüse. Jahrbuch WGLR, S. 160 (1962)

    Google Scholar 

  70. Wegener, P.P., Cagliostro, D.J.: Periodic nozzle flow with heat addition. Combust. Sci. Technol. 6, 269 (1973)

    Google Scholar 

  71. Mundinger, G.: Numerische Simulation instationärer Lavaldüsenströmungen mit Energiezufuhr durch homogene Kondensation. Dissertation, University of Karlsruhe (TH) (1994)

    Google Scholar 

  72. Adam, S.: Numerische und experimentelle Untersuchung instationärer Düsenströmungen mit Energiezufuhr durch homogene Kondensation. Dissertation Fakultät Maschinenbau, University of Karlsruhe (TH) (1996)

    Google Scholar 

  73. Adam, S., Schnerr, G.H.: Instabilities and bifurcation of non-equilibrium two-phase flows. J. Fluid Mech. 348, 1–28 (1997)

    MathSciNet  MATH  Google Scholar 

  74. Hausmann, G.: Untersuchung zur Laval-Düsenströmung von Wasserdampf mit unterkühltem Ruhezustand. Dissertation, University of Karlsruhe (TH) (1976)

    Google Scholar 

  75. Bender, E.: Die Berechnung von Phasengleichgewichten mit der thermischen Zustandsgleichung. Ruhr-Univ. Bochum, Habilitationsschrift (1971)

    Google Scholar 

  76. Theis, G.: Spontankondensation in übersättigten Dampfströmungen von Kohlendioxid und Difluordichlormethan. Dissertation University of Karlsruhe (TH) (1985)

    Google Scholar 

  77. Sander, A., Damköhler, G.: Übersättigung bei der spontanen Keimbildung in Wasserdampf. Naturwissenschaften 31, 460–465 (1943)

    Google Scholar 

  78. Cwilong, B.M.: Sublimation in a Wilson-Chamber. (a) Nature 155, 361–362, (b) (1947) Proc Roy Soc (London) A 190, 137–143 (1945)

    Google Scholar 

  79. Fournier d’Albe, E.M.: Condensation of water vapour below 0 °C. Nature 162, 921–922 (1948)

    Google Scholar 

  80. Anderson, R.J., Miller, R.C., Kassner, J.L., Hagen, D.E.: A study of homogeneous condensation-freezing nucleation of small water droplets in an expansion cloud chamber. J. Atmos. Sci. 37, 2508–2520 (1980)

    Google Scholar 

  81. Zander, M.: Anlagen für Druck-, Volumen- und Temperaturmessungen an reinen fluiden Stoffen und ihre Anwendung auf Difluormonochlormethan. Dissertation, TH Braunschweig (1968)

    Google Scholar 

  82. York, C.M.: Cloud chambers. In: Flügge (Hrsg.) Handb. d. Physik, Bd. 45, S. 260–313. Springer, Berlin/Göttingen/Heidelberg (1959)

    Google Scholar 

  83. Wilson, J.G.: The Principles of Cloud Chamber Technique. University Press, Cambridge (1951)

    Google Scholar 

  84. Oertel, H.: Stoßrohre. Springer, Wien/New York (1966)

    Google Scholar 

  85. Powell, C.F.: Condensation phenomena at different temperatures. Proc. Roy. Soc. Lond. A. 119, 553–577 (1928)

    Google Scholar 

  86. Frey, F.: Über die Kondensation von Dämpfen in einem Trägergas. Z. Phys. Chem. B. 49, 83–101 (1941)

    Google Scholar 

  87. Maushart, R., Pollermann, M.: Messung des Temperaturverlaufs während der Expansion wasserdampfgesättigter Luft. Z Elektroch. 59, 455–460 (1955)

    Google Scholar 

  88. Wright, W.: Zum Einfluß der Entspannungsgeschwindigkeit auf die spontane Kondensation übersättigter Dämpfe. Dissertation, University of Karlsruhe (TH) (1993)

    Google Scholar 

  89. Peters, F.: A new method to measure homogeneous nucleation rates in shock tubes. Exp. Fluids 1, 143–148 (1983)

    Google Scholar 

  90. Wu, B.J.C.: Analysis of condensation in the centered expansion wave in a shock tube. In: Pouring, A.A. (Hrsg.) Condensation in High Speed Flows, Symposium at Yale University, New Haven, Conn., June 15–17, S. 73–82. ASME Publication, New York (1977)

    Google Scholar 

  91. Lee, C.F.: Condensation of H2O and D2O in Argon in the centered expansion wave in a shock tube. In: Povring, A.A. (Hrsg.) Condensation in High Speed Flows, Symposium at Yale University, New Haven, Conn., June 15–17, S. 83–96. ASME Publication, New York (1977)

    Google Scholar 

  92. Barschdorff, D.: Carrier gas effects on homogeneous nucleation of water vapor in a shock tube. Phys. Fluids 18, 529–535 (1975)

    Google Scholar 

  93. Wegener, P.P., Lee, C.F.: Condensation by homogeneous nucleation of H2O, C6H6, CCl4 and CCl3F in a shock tube. J. Aerosol Sci. 4, 29–37 (1983)

    Google Scholar 

  94. Paikert, B.: Untersuchung der Kondensation und Verdampfung ruhender Tropfen in Gas-Dampf-Gemischen mit Hilfe eines Stoßwellenrohres. Dissertation, University of Essen (1990)

    Google Scholar 

  95. Patwardhan, V.S.: Condensation of saturated vapours on isentropic compression: a simple criterion. Heat Recovery Syst. CHP. 7, 395–399 (1987)

    Google Scholar 

  96. Thompson, P.A., Sullivan, D.A.: On the possibility of complete condensation shock waves in retrograde fluids. J. Fluid Mech. 70, 639–649 (1975)

    Google Scholar 

  97. Dettleff, G., Thompson, P.A., Meier, G.E.A., Speckmann, H.-D.: An experimental study of liquefaction shock waves. J. Fluid Mech. 95, 279–304 (1979)

    Google Scholar 

  98. Gülen, S.C.: On the possibility of shock-induced condensation in the thermodynamically unstable region. J. Non-Equilib. Thermodyn. 19, 375–393 (1994)

    Google Scholar 

  99. Chmielewski, T., Sherman, P.M.: Effect of a carrier-gas on homogeneous condensation in a supersonic nozzle. AIAA J. 8, 789–793 (1970)

    Google Scholar 

  100. Kuan, B.T., Witt, P.J.: Modelling supersonic quenching of magnesium vapour in a Laval nozzle. Chem. Eng. Sci. 87, 23–29 (2013)

    Google Scholar 

  101. Frank, W.: Condensation phenomena in supersonic nozzles. Acta Mech. 54, 135–156 (1985)

    Google Scholar 

  102. Wu, B.J.C., Wegener, P.P., Stein, G.D.: Condensation of sulfur hexafluoride in steady supersonic nozzle flow. J. Chem. Phys. 68, 308–318 (1978)

    Google Scholar 

  103. Dawson, D.B.: Condensation of Supersaturated Organic Vapors in a Supersonic Nozzle. M. Sc. Thesis, Massachusetts Institute of Technology (1967)

    Google Scholar 

  104. Dawson, D.B., Willson, E.J., Hill, P.G., Russell, K.C.: Nucleation of supersaturated vapors in nozzles, II. C6H6, CHCl3, CCl3F, C2H5OH. J. Chem. Phys. 51, 5389–5397 (1969)

    Google Scholar 

  105. Jaeger, H.L.: Condensation of Supersaturated Ammonia and Water Vapor in Supersonic Nozzles. M. Sc. Thesis, Massachusetts Institute of Technology (1966)

    Google Scholar 

  106. Jaeger, H.L., Willson, E.J., Hill, P.G., Russell, K.C.: Nucleation of supersaturated vapors in nozzles, I. H2O and NH3. J. Chem. Phys. 51, 5380–5388 (1969)

    Google Scholar 

  107. Treffinger, P., Ehrler, F., Bier, K. Spontane Kondensation in Überschallströmungen. Fortschr.-Ber. VDI, R. 7, Nr. 251. VDI-Verlag, Düsseldorf (1994)

    Google Scholar 

  108. Hale, B.N.: Application of a scaled homogeneous nucleation rate formalism to experimental data at T ≪ Tc. Phys. Rev. A. 33, 4156–4163 (1986)

    Google Scholar 

  109. Hale, B.N.: Scaled models for nucleation. In: Wagner, P.E., Valir, G. (Hrsg.) Lecture Notes in Physics 509, Atmospheric Aerosols and Nucleation. Proceedings, S. 323–340. Springer, Wien (1988)

    Google Scholar 

  110. Hagena, O.F.: Condensation in free jets: comparison of rare gases and metals. Z. Phys. D: At., Mol. Clusters 4, 291 (1987)

    Google Scholar 

  111. Renner, T.A., Kucera, G.H., Blander, M.: A Study of Hydrogen Bonding in Methanol Vapour by Measurement of Thermal Conductivity. J. Chem. Phys. 66, 177–184 (1977)

    Google Scholar 

  112. Strey, R., Wagner, P.E., Schmeling, T.: Homogeneous nucleation rates for n-Alcohol vapours measured in a two-piston expansion chamber. J. Chem. Phys. 84, 2325 (1986)

    Google Scholar 

  113. Helbling, J.: Untersuchungen zur partiellen Kondensation in Strömungen binärer Gemische bei niedriger Gasdichte. Dissertation, University of Karlsruhe (TH) (1988)

    Google Scholar 

  114. Wegener, P.P., Pouring, A.A.: Experiments on condensation of water vapor by homogeneous nucleation in nozzles. Phys. Fluids 7, 352–361 (1964)

    Google Scholar 

  115. Treffinger, P.: Untersuchungen zur spontanen Kondensation übersättigter Dämpfe. Dissertation, University of Karlsruhe (TH) (1994)

    Google Scholar 

  116. Delale, C.F., Schnerr, G.H., Zierep, J.: Asymptotic solution of transonic nozzle flows with homogeneous condensation. I. Subcritical flows. Phys. Fluids A. 5, 2969–2981 (1993)

    MATH  Google Scholar 

  117. Delale, C.F., Schnerr, G.H., Zierep, J.: Asymptotic solution of transonic nozzle flows with homogeneous condensation. II. Supercritical flows. Phys. Fluids A. 5, 2982–2995 (1993)

    MATH  Google Scholar 

  118. Moses, C.A., Stein, G.D.: On the growth of droplets formed in a Laval-Nozzle using both static pressure and light-scattering measurements. Trans. ASME, J Fluids Eng. 100, 311–322 (1978)

    Google Scholar 

  119. Schnerr, G.H., Bohning, R., Breitling, T., Jantzen, H.-A.: Compressible turbulent boundary layers with heat addition by Homogeneous Condensation. AIAA J. 30, 1284–1289 (1992)

    Google Scholar 

  120. Steinmeyer, D.E.: Fog formation in partial condensers. Chem. Eng. Prog. 68, 64–68 (1972)

    Google Scholar 

  121. Amelin, A.G.: Theory of Fog Condensation. Israel program for scientific translations, Jerusalem (1967)

    Google Scholar 

  122. Ulbrich, M., Sachweh, B., Meckl, S., Schraut, A., Hölemann, K.: Aerosolbildung in Absorptionsprozessen – Ursachen und Lösungsansätze. Chem. Ing. Tech. 71, 52–61 (1999)

    Google Scholar 

  123. Haep, S.: Bildung und Wachstum von Aerosolen unter Bedingungen der nassen Rauchgasreinigung. VDI-Fortschritt-Berichte, Reihe 3, Nr. 641. VDI-Verlag, Düsseldorf (2000)

    Google Scholar 

  124. Brosig, G.: Untersuchung von HCl-Nebeln in technischen Gasreinigungsanlagen. Fortschritt-Berichte VDI Reihe 3, Nr. 903. VDI-Verlag. ISBN 978-3-18-390 303-0 (2009)

    Google Scholar 

  125. Manthey, A.: Bildung und Verhalten von Nebel in einem Rohrbündelkondensator. Dissertation, University of Karlsruhe (TH) (2000)

    Google Scholar 

  126. Brouwers, H.J.H., Chesters, A.K.: Film models for transport phenomena with fog formation: the classical film model. Int. J. Heat Mass Transf. 35, 1–11 (1992)

    MATH  Google Scholar 

  127. Toor, H.L.: Fog vaporization and condensation in boundary value problems. Ind. Eng. Chem. Fundam. 10, 121–131 (1971)

    Google Scholar 

  128. Brouwers, H.J.H.: Film models for transport phenomena with fog formation: the fog film model. Int. J. Heat Mass Transf. 35, 13–28 (1992)

    MATH  Google Scholar 

  129. Rosner, D.E.: Enhancement of diffusion-limited vaporization rates by condensation within the thermal boundary layer. Int. J. Heat Mass Transf. 10, 1267–1279 (1967)

    Google Scholar 

  130. Kaufmann, S., Lorentz, Y., Hilfiker, K.: Prevention of fog in a condenser by simultaneous heating and cooling. Heat Mass Transf. 32, 403–410 (1997)

    Google Scholar 

  131. Manthey, A., Schaber, K.: The formation and behavior of fog in a tube bundle condenser. Int. J. Therm. Sci. 39, 1004–1014 (2000)

    Google Scholar 

  132. Mall-Gleißle, S.: Entstehung von Aerosolen bei der Kondensation und Verdampfung. Fortschritt-Berichte VDI, Reihe 3, Nr. 891. VDI-Verlag. ISBN 978-3-18-389 103-0 (2008)

    Google Scholar 

  133. Mall-Gleißle, S., Schaber, K.: Aerosolbildung in Kondensatoren. Chem. Ing. Tech. 75, 1621–1624 (2003)

    Google Scholar 

  134. Housiadas, C., Papanicolaou, E., Drossinos, Y.: Combined heat and mass transfer in laminar flow diffusion nucleation chambers. J. Aerosol Sci. 33, 797–816 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karlheinz Schaber .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ehrler, F., Schaber, K. (2019). J5 Spontane Kondensation und Aerosolbildung. In: Stephan, P., Kabelac, S., Kind, M., Mewes, D., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas. Springer Reference Technik(). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52989-8_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52989-8_67

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52988-1

  • Online ISBN: 978-3-662-52989-8

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics