Skip to main content

F3 Wärmeübertragung bei freier Konvektion: Innenströmungen

  • Chapter
  • First Online:
VDI-Wärmeatlas

Part of the book series: Springer Reference Technik ((VDISR))

  • 3540 Accesses

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Bearbeitung einer Vorlage von Herbert Klan

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 989.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer. Wiley, New York (1996)

    Google Scholar 

  2. Siggia, E.: High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137–168 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Ahlers, G., Grossmann, S., Lohse, D.: Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 81, 503–537 (2009)

    Google Scholar 

  4. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, New York (1981)

    MATH  Google Scholar 

  5. Busse, F.: Transition to turbulence in Rayleigh-Bénard convection. In: Swinney, H.L. (Hrsg.) Gollub JP: Hydrodynamic Instabilities and the Transition to Turbulence (Topics in Applied Physics 45), S. 97–133. Springer, Berlin (1985)

    Google Scholar 

  6. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    MATH  Google Scholar 

  7. Bodenschatz, E., Pesch, W., Ahlers, G.: Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 32, 709–778 (2000)

    MATH  Google Scholar 

  8. Funfschilling, D., Brown, E., Nikolaenko, A., Ahlers, G.: Heat transport by turbulent Rayleigh-Bénard convection in cylindrical samples with aspect ratio one and larger. J. Fluid Mech. 536, 145–154 (2005)

    MATH  Google Scholar 

  9. Sun, C., Ren, L.Y., Song, H., Xia, K.Q.: Heat transport by turbulent Rayleigh-Bénard convection in 1m diameter cylindrical cells of widely varying aspect ratio. J. Fluid Mech. 542, 165–174 (2005)

    MATH  Google Scholar 

  10. Nikolaenko, A., Brown, E., Funfschilling, D., Ahlers, G.: Heat transport by turbulent Rayleigh-Bénard convection in cylindrical cells with aspect ratio one and less. J. Fluid Mech. 523, 251–260 (2005)

    MATH  Google Scholar 

  11. Niemela, J.J., Sreenivasan, K.R.: Confined turbulent convection. J. Fluid Mech. 481, 355–384 (2003)

    MATH  Google Scholar 

  12. Chavanne, X., Chilla, F., Chabaud, B., Castaing, B., Hebral, B.: Turbulent Rayleigh-Bénard convection in gaseous and liquid helium. Phys. Fluid. 13, 1300–1320 (2001)

    MATH  Google Scholar 

  13. Cioni, S., Ciliberto, S., Sommeria, J.: Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111–140 (1997)

    MathSciNet  Google Scholar 

  14. Glazier, J.A., Segawa, A., Sano, M.: Evidence against ‚ultrahard‘ thermal turbulence at very high Rayleigh numbers. Nature. 398, 307–310 (1999)

    Google Scholar 

  15. Grossmann, S., Lohse, D.: Turbulent thermal convection: a unifying view. J. Fluid Mech. 407, 27–56 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Holling, M., Herwig, H.: Asymptotic analysis of heat transfer in turbulent Rayleigh-Bénard convection. Int. J. Heat Mass Transfer. 49, 1129–1136 (2006)

    MATH  Google Scholar 

  17. Probert, S.D., Brooks, R.G., Dixon, M.: Heat transfer across rectangular cavities. Chem. Process Eng. Heat Transf. Surv., 35–42 (1970)

    Google Scholar 

  18. Hollands, K.G.T., Raithby, G.D., Konicek, L.: Correlation equations for free convection heat transfer in horizontal layers of air and water. Int. J. Heat Mass Transf. 19, 879–884 (1975)

    Google Scholar 

  19. Catton, I., Edwards, D.K.: Effect of side walls on natural convection between horizontal plates heated from below. J. Heat Transf. 89, 295–299 (1967)

    Google Scholar 

  20. Churchill, S.W.: Free convection around immersed bodies. In: Schlünder, E.U. (Hrsg.) Heat Exchanger Design Handbook, Abschn. 2.5.7. Hemispheres Publishing, New York (1983)

    Google Scholar 

  21. Wagner, S., Shishkina, O.: Heat flux enhancement by regular surface roughness in turbulent thermal convection. J. Fluid Mech. 763, 109–135 (2015)

    MathSciNet  Google Scholar 

  22. Liot, O., Salort, J., Kaiser, R., du Puits, R., Chilla, F.: Boundary layer structure in a rough Rayleigh–Bénard cell filled with air. J. Fluid Mech. 786, 275–293 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Landau, L., Lifshitz, E.: Fluid Mechanics, 2. Aufl. Course of Theoretical Physics. Butterworth-Heinemann, Oxford, Großbritannien (1987)

    Google Scholar 

  24. Du, Y.-B., Tong, P.: Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid Mech. 407, 57–84 (2000)

    MATH  Google Scholar 

  25. Tisserand, J.-C., Creyssels, M., Gasteuil, Y., Pabiou, H., Gibert, M., Castaing, B., Chilla, F.: Comparison between rough and smooth plates within the same Rayleigh–Bénard cell. Phys. Fluids. 23, 015105 (2011)

    Google Scholar 

  26. Wei, P., Chan, T.-S., Ni, R., Zhao, X.-Z., Xia, K.-Q.: Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection. J. Fluid Mech. 740, 28–46 (2014)

    MathSciNet  Google Scholar 

  27. Dropkin, D., Somerscales, E.: Heat transfer by natural convection in liquids confined by two parallel plates which are inclined at various angles with respect to the horizontal. Trans. ASME. 87, 77 (1965)

    Google Scholar 

  28. Hollands, K.G.T., Unny, T.E., Raithby, G.D., Konicek, L.: Free convective heat transfer across inclined air layers. Trans. ASME J. Heat Transf. 98, 189–193 (1976)

    Google Scholar 

  29. Randall, K.R., Mitchell, J.W., El-Wakil, M.M.: Natural convection heat transfer characteristics of flat plate enclosures. Trans. ASME J. Heat Transf. 101, 120–125 (1979)

    Google Scholar 

  30. Hollands, K.G.T., Konicek, L.: Experimental study of the stability of differentially heated inclined air layers. Int. J. Heat Mass Transf. 16, 1467–1476 (1973)

    Google Scholar 

  31. Inaba, H.: Experimental study of natural convection in an inclined air layer. Int. J. Heat Mass Transf. 27, 1127–1139 (1984)

    Google Scholar 

  32. MacGregor, R.K., Emery, A.F.: Free convection through vertical plane layers – moderate and high Prandtl number fluids. Trans. ASME J. Heat Transf. Ser. C. 91, 391–403 (1969)

    Google Scholar 

  33. Yin, S.H., Wung, T.Y., Chen, K.: Natural convection in an air layer enclosed within rectangular cavities. Int. J. Heat Mass Transf. 21, 307–315 (1978)

    Google Scholar 

  34. Markatos, N.C., Pericleous, K.A.: Laminar and turbulent natural convection in an enclosed cavity. Int. J. Heat Mass Transf. 27, 755–772 (1984)

    MATH  Google Scholar 

  35. Merker, G.P., Mey, S.: Wärmeübergang bei freier Konvektion in seitlich beheizten Rechteckbehältern. Wärme- Stoffübertragung. 22, 291–301 (1988)

    Google Scholar 

  36. Nishimura, T., Shiraishi, M., Nagasawa, F., Kawamura, Y.: Natural convection heat transfer in enclosures with multiple vertical partitions. Int. J. Heat Mass Transf. 31, 1679–1686 (1988)

    Google Scholar 

  37. Bajorek, S.M., Lloyd, J.R.: Experimental investigation of natural convection in partitioned enclosures. J. Heat Transf. 104, 527–532 (1982)

    Google Scholar 

  38. Nansteel, M.W., Greif, R.: Natural convection in undivided and partially divided rectangular enclosures. J. Heat Transf. 103, 623–629 (1981)

    Google Scholar 

  39. Seki, N., Fukusako, S., Yamaguchi, A.: An experimental study of free corrective heat transfer in a parallelogrammic enclosure. J. Heat Transf. 105, 433–439 (1983)

    Google Scholar 

  40. Smart, D.R., Hollands, K.G.T., Raithby, G.D.: Free convection heat transfer across rectangular-called diathermaneous honeycomb. J. Heat Transf. 102, 75–80 (1980)

    Google Scholar 

  41. Itoh, M., Fujita, T., Nishiwaki, N., Hirata, M.: A new method of correlating heat-transfer coefficients for natural convection in horizontal cylindrical annuli. Int. J. Heat Mass Transf. 13, 1364–1368 (1970)

    Google Scholar 

  42. Kühn, T.H., Goldstein, R.J.: Correlating equations for natural convection heat transfer between horizontal circular cylinders. Int. J. Heat Mass Transf. 19, 1126–1134 (1976)

    Google Scholar 

  43. Hessami, M.A., Pollard, A., Rowe, R.D., Ruth, D.W.: A study of free convective heat transfer in a horizontal annulus with a large radii ratio. J. Heat Transf. 107, 603–610 (1985)

    Google Scholar 

  44. Projahn, U., Beer, H.: Prandtl number effects on natural convection heat transfer in concentric and eccentric horizontal cylindrical annuli. Wärme- Stoffübertragung. 19, 248–254 (1985)

    Google Scholar 

  45. Nagendra, H.R., Tirunarayanan, M.A., Ranachandran, A.: Free convection heat transfer in vertical annuli. Chem. Eng. Sci. 25, 605–610 (1970)

    Google Scholar 

  46. Keyhani, M., Kulacki, F.A., Christensen, R.N.: Free convection in a vertical annulus with constant heat flux on the inner wall. J. Heat Transf. 105, 454–459 (1983)

    Google Scholar 

  47. Prasad, V., Kulacki, F.A.: Free convective heat transfer in a liquid-filled vertical annulus. J. Heat Transf. 107, 596–602 (1985a)

    Google Scholar 

  48. Wright, J.L., Douglas, R.W.: Natural convection in narrow-gap, spherical annuli. Int. J. Heat Mass Transf. 29, 725–739 (1986)

    MATH  Google Scholar 

  49. Himasekhar, K., Bau, H.H.: Large Rayleigh number convection in a horizontal, eccentric annulus containing saturated porous media. Int. J. Heat Mass Transf. 20, 702–712 (1986)

    MATH  Google Scholar 

  50. Prasad, A., Kulacki, F.A.: Free convective heat transfer in a liquid-filled vertical annulus. J. Heat Transf. 107, 596–602 (1985b)

    Google Scholar 

  51. Beckermann, C., Ramadhyami, S., Viskanta, R.J.: Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure. J. Heat Transf. 109, 363–370 (1987)

    Google Scholar 

  52. Inaba, H., Sugawara, M., Blumenberg, J.: Natural convection heat transfer in an inclined porous layer. Int. J. Heat Mass Transf. 31, 1365–1374 (1988)

    Google Scholar 

  53. Jonsson, T., Catton, I.: Prandtl number dependence of natural convection in porous media. J. Heat Transf. 109, 371–377 (1987)

    Google Scholar 

  54. Rao, Y.F., Fukuda, K., Hasegawa, S.: Steady and transient analyses of natural convection in a horizontal porous annulus with the Galerkin method. J. Heat Transf. 109, 919–927 (1987)

    Google Scholar 

  55. Prasad, V.: Numerical study of natural convection in a vertical, porous annulus with constant heat flux on the inner wall. Numer. Heat Transf. 29, 841–853 (1986)

    Google Scholar 

  56. Krischer, O., Kast, W.: Trocknungstechnik, Bd. 1. Springer, Berlin (1978)

    Google Scholar 

  57. Acharya, S., Goldstein, R.J.: J. Heat Transf. 107, 855–866 (1985)

    Google Scholar 

  58. Cheung, F.B.: Natural convection in a volumetrically heated fluid layer at high Rayleigh numbers. Int. J. Heat Mass Transf. 20, 499–506 (1977)

    Google Scholar 

  59. Kikuchi, Y., Kawasaki, T., Shioyama, T.: Thermal convection in a horizontal fluid layer heated internally and from below. Int. J. Heat Mass Transf. 25, 363–370 (1982)

    Google Scholar 

  60. Kulacki, F.A., Goldstein, R.J.: Thermal convection in a horizontal fluid layer with uniform volumetric energy sources. J. Fluid Mech. 55, 271–287 (1972)

    Google Scholar 

  61. Lee, J.-H., Goldstein, R.J.: An experimental study on natural convection heat transfer in an inclined square enclosure containing internal energy sources. J. Heat Transf. 110, 345–349 (1988)

    Google Scholar 

  62. Yücel, A., Acharya, S., Williams, M.L.: Natural convection and radiation in a square enclosure. Numer. Heat Transf. 15, 261–278 (1989)

    Google Scholar 

  63. Kim, D.M., Viskanta, R.: Effect of wall conduction and radiation on natural convection in a rectangular cavity. Numer. Heat Transf. 7, 449–470 (1984)

    MATH  Google Scholar 

  64. Viskanta, R.: Radiative heat transfer. Fortschr. Verfahrenstechn. 22, 51 (1984)

    Google Scholar 

  65. Fusegi, T., Farouk, B.: Laminar and turbulent natural convection-radiation interactions in a square enclosure filled with a non-gray gas. Numer. Heat Transf. 15, 303–322 (1989)

    MATH  Google Scholar 

  66. Siegel, R., Howell, JR., Lohrengel, J.: Wärmeübertragung durch Strahlung, 1 bis 3. Springer, Berlin (1988/1993)

    Google Scholar 

  67. Ranganathan, P., Viskanta, R.: Natural convection in a square cavity due to combined driving forces. Numer. Heat Transf. 14, 35–59 (1988)

    Google Scholar 

  68. Trevisan, O.V., Bejan, A.: Combined heat and mass transfer by natural convection in a vertical enclosure. Heat Transf. 109, 104–112 (1987)

    Google Scholar 

  69. Jany, P., Bejan, A.: Scaling theory of melting with natural convection in an enclosure. Int. J. Heat Mass Transf. 31, 1221–1235 (1988)

    Google Scholar 

  70. Lacroix, M.: Computation of heat transfer during melting of a pure substance from an isothermal wall. Numer. Heat Transf. 15B, 191–210 (1989)

    Google Scholar 

  71. Betzel, T., Beer, H.: Solidification and melting heat transfer to an unifexed phase change material (PCM) encapsulated in a horizontal concentric annulus. Wärme- Stoffübertragung. 22, 335–344 (1988)

    Google Scholar 

  72. Riviere, P., Beer, H.: Experimental investigation of melting of unfixed ice in an isothermal enclosure. Int. Commun. Heat Mass Transf. 14, 155–165 (1987)

    Google Scholar 

  73. Patterson, J., Imberger, J.: Unsteady natural convection in a rectangular cavity. J. Fluid Mech. 100, 65–85 (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Thess .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thess, A., Kaiser, R. (2019). F3 Wärmeübertragung bei freier Konvektion: Innenströmungen. In: Stephan, P., Kabelac, S., Kind, M., Mewes, D., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas. Springer Reference Technik(). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52989-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52989-8_39

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52988-1

  • Online ISBN: 978-3-662-52989-8

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics