Skip to main content

Abstract

The comparative method can be used to test hypotheses of adaptation by comparing groups of species that meet different adaptive challenges. This requires attention to phylogenetic correlations and to historical lags in achieving adaptation. The modern phylogenetic comparative method has provided some partial solutions to these problems, but the field has also suffered from a systemic lack of demand for biological justifications of its statistical procedures. Consequently, assumptions have been made for statistical convenience and are often inconsistent with the relevant biology. I argue that common comparative tests of adaptation, including Brownian-motion based phylogenetic linear models and inferred-changes methods based on reconstructing ancestral states, violate essential characteristics of adaptation as a biological process. I discuss the requirements for biologically consistent comparative analysis of adaptation, and I review work toward this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armbruster WS (2002) Can indirect selection and genetic context contribute to trait diversification? A transition-probability study of bolssom-colour evolution in two genera. J Evol Biol 15:468–486

    Article  Google Scholar 

  • Bartoszek K, Pienaar J, Mostad P, Andersson S, Hansen TF (2012) A comparative method for studying multivariate adaptation. J Theor Biol 314:204–215

    Article  Google Scholar 

  • Baum DA, Larson A (1991) Adaptation reviewed: a phylogenetic methodology for studying character macroevolution. Syst Zool 40:1–18

    Article  Google Scholar 

  • Beaulieu JM, Jhwueng D-C, Boettiger C, O’Meara BC (2012) Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution 66:2369–2383

    Article  Google Scholar 

  • Brooks DR, McLennan DH (1991) Phylogeny, ecology and behavior: a research program in comparative biology. University of Chicago Press, Chicago

    Google Scholar 

  • Butler MA, King AA (2004) Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am Nat 164:683–695

    Article  Google Scholar 

  • Cheverud JM, Dow MM, Leutenegger W (1985) The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism in body weights among primates. Evolution 39:1335–1351

    Article  Google Scholar 

  • Clutton-Brock TH, Albon SD, Harvey PH (1980) Antlers, body size and breeding group size in the Cervida. Nature 285:565–567

    Article  Google Scholar 

  • Coddington JA (1988) Cladistic tests of adaptational hypotheses. Cladistics 4:3–22

    Article  Google Scholar 

  • Cooper N, Jetz W, Freckleton RP (2010) Phylogenetic comparative approaches for studying niche conservatism. J Evol Biol 23:2529–2539

    Article  CAS  Google Scholar 

  • Diniz-Filho JAF, Ramos de Sant’ana CE, Bini LM (1998) An eigenvector method for estimating phylogenetic inertia. Evolution 52:1247–1262

    Article  Google Scholar 

  • Diniz-Filho JAF, Rangel TF, Santos T, Bini LM (2012) Exploring patterns of interspecific variation in quantitative traits using sequential phylogenetic eigenvector regressions. Evolution 66:1079–1090

    Article  Google Scholar 

  • Escudero M, Hipp A, Hansen TF, Voje KL, Luceño M (2012) Selection and inertia in the evolution of holocentric chromosomes in sedges (Carex, Cyperaceae). New Phytol 195:237–247

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Felsenstein J (2008) Comparative methods with sampling error and within-species variation: contrasts revisited and revised. Am Nat 171:713–725

    Article  Google Scholar 

  • Felsenstein J (2012) A comparative method for both discrete and continuous characters using the threshold model. Am Nat 179:145–176

    Article  Google Scholar 

  • Freckleton RP, Cooper N, Jetz W (2011) Comparative methods as a statistical fix: the dangers of ignoring an evolutionary model. Am Nat 178:E10–E17

    Article  Google Scholar 

  • Frumhoff PC, Reeve HK (1994) Using phylogenies to test hypotheses of adaptation: a critique of some current proposals. Evolution 48:172–180

    Article  Google Scholar 

  • Garland T Jr, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. J Exper Biol 208:3015–3035

    Article  Google Scholar 

  • Garamszegi LZ, Møller AP (2010) Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol Rev 85:797–805

    Google Scholar 

  • Garamszegi LZ, Møller AP (2011) Nonrandom variation in within-species sample size and missing data in Phylogenetic comparative studies. Syst Biol 60:876–880

    Article  Google Scholar 

  • Geist V (1998) Deer of the world: their evolution, behavior, and ecology. Swan Hill Press, Shrewsbury

    Google Scholar 

  • Gould SJ (1973) Positive allometry of antlers in the “Irish elk”, Megaloceros giganteus. Nature 244:375–376

    Article  Google Scholar 

  • Gould SJ (1974) The evolutionary significance of “bizarre” structures: antler size and skull structure in the “Irish Elk,” Megaloceros giganteus. Evolution 28:191–220

    PubMed  Google Scholar 

  • Gould SJ (1977) Ontogeny and Phylogeny. Belknap, Cambridge

    Google Scholar 

  • Gould SJ (1998) A lesson from the old masters. In: Gould SJ (ed) Leonardo’s mountain of clams and the diet of worms. Harmon books, pp 179-196

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge

    Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8:4–15

    Article  Google Scholar 

  • Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23:494–508

    Article  CAS  Google Scholar 

  • Hansen TF (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution 51:1341–1351

    Article  Google Scholar 

  • Hansen TF (2012) Adaptive landscapes and macroevolutionary dynamics. In: Svensson EI, Calsbeek R (eds) The adaptive landscape in evolutionary biology. Oxford University Press, Oxford, pp 205–226

    Google Scholar 

  • Hansen TF, Bartoszek K (2012) Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies. Syst Biol 61:413–425

    Article  Google Scholar 

  • Hansen TF, Martins EP (1996) Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution 50:1404–1417

    Article  Google Scholar 

  • Hansen TF, Orzack SH (2005) Assessing current adaptation and phylogenetic inertia as explanations of trait evolution: the need for controlled comparisons. Evolution 59:2063–2072

    PubMed  Google Scholar 

  • Hansen TF, Pienaar J, Orzack SH (2008) A comparative method for studying adaptation to a randomly evolving environment. Evolution 62:1965–1977

    PubMed  Google Scholar 

  • Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) Geiger: investigating evolutionary radiations. Bioinformatics 24:129–131

    Article  CAS  Google Scholar 

  • Houle D, Pélabon C, Wagner GP, Hansen TF (2011) Measurement and meaning in biology. Quart Rev Biol 86:3–34

    Article  Google Scholar 

  • Hughes S, Hayden TJ, Douady CJ, Tougard C, Germonpre M, Stuart A, Lbova L, Carden RF, Hanni C, Say L (2006) Molecular phylogeny of the extinct giant deer, Megaloceros giganteus. Mol Phylogenet Evol 40:285–291

    Article  CAS  Google Scholar 

  • Huxley JS (1932) Problems of relative growth. Lincoln Mac Veagh-The Dial Press, New York

    Google Scholar 

  • Ingram T, Mahler DL (2013) SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike information criterion. Methods Ecol Evol 4:416–425

    Article  Google Scholar 

  • Ives AR, Garland T Jr (2010) Phylogenetic logistic regression for binary dependent variables. Syst Biol 59:9–26

    Article  Google Scholar 

  • Ives AR, Midford PE, Garland T Jr (2007) Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol 56:252–270

    Article  Google Scholar 

  • Kelly C, Price TD (2004) Comparative methods based on species mean values. Math Biosci 187:135–154

    Article  Google Scholar 

  • Kemp TS (2006) The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure. Zool J Linn Soc 147:473–488

    Article  Google Scholar 

  • Kemp TS (2007) The origin of higher taxa: macroevolutionary processes, and the case of the mammals. Acta Zoologica 88:3–22

    Article  Google Scholar 

  • Labra A, Pienaar J, Hansen TF (2009) Evolution of thermal physiology in Lioleamus lizards: adaptation, phylogenetic inertia and niche tracking. Am Nat 174:204–220

    Article  Google Scholar 

  • Labra A, Voje KL, Seligmann H, Hansen TF (2010) Evolution of the third eye: a phylogenetic comparative study of parietal-eye size as an ecophysiological adaptation in Liolaemus lizards. Biological J Linn Soc 101:870–883

    Article  Google Scholar 

  • Lajeunesse MJ (2009) Meta-analysis and the comparative phylogenetic method. Am Nat 174:369–381

    PubMed  Google Scholar 

  • Lande R (1976) Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314–334

    Article  Google Scholar 

  • Larson A, Losos JB (1996) Phylogenetic systematics of adaptation. In: Rose MR, Lauder GW (eds) Adaptation. Academic press, San Diego, pp 187–220

    Google Scholar 

  • Lister AM et al (2005) The phylogenetic position of the ‘giant deer’ Megaloceros giganteus. Nature 438:850–853

    Article  CAS  Google Scholar 

  • Lynch M (1991) Methods for the analysis of comparative data in evolutionary biology. Evolution 45:1065–1080

    Article  Google Scholar 

  • Maddison DR (1994) Phylogenetic methods for inferring the evolutionary history and processes of change in discretely valued characters. Ann Rev Entomol 39:267–292

    Article  Google Scholar 

  • Martins EP (2000) Adaptation and the comparative method. Trends Ecol Evol 15:296–299

    Article  CAS  Google Scholar 

  • Martins EP (2004) Compare, version 4.6b. Computer programs for the statistical analysis of comparative data. Distributed by the author at http://compare.bio.indiana.edu/. Technical report, Department of Biology, Indiana University, Bloomington, IN

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Article  Google Scholar 

  • Mitchell WA, Valone TJ (1990) The optimization research program: studying adaptations by their function. Quart Rev Biol 65:43–52

    Article  Google Scholar 

  • Nunn CL (2011) The comparative approach in evolutionary anthropology and biology. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • O’Meara BC (2012) Evolutionary inferences from phylogenies: a review of methods. Annu Rev Ecol Evol Syst 43:267–285

    Article  Google Scholar 

  • O’Meara BC, Ane C, Sanderson MJ, Wainwright PC (2006) Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922–933

    Article  Google Scholar 

  • Pagel MD (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc B 255:37–45

    Article  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) Ape: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  Google Scholar 

  • Pennell MW, Harmon LJ (2013) An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Ann New York Acad Sci 1289:90–105

    Article  Google Scholar 

  • Plard F, Bonenfant C, Gaillard J-M (2011) Revisiting the allometry of antlers among deer species: male–male sexual competition as a driver. Oikos 120:601–606

    Article  Google Scholar 

  • Price T (1997) Correlated evolution and independent contrasts. Philos Trans R Soc B 355:1599–1606

    Google Scholar 

  • Reeve HK, Sherman PW (1993) Adaptation and the goals of evolutionary research. Quart Rev Biol 68:1–32

    Article  Google Scholar 

  • Reeve HK, Sherman PW (2001) Optimality and phylogeny: a critique of current thought. In: Orzack SH, Sober E (eds) Adaptationism and optimality. Cambridge University Press, Cambridge, pp 64–113

    Chapter  Google Scholar 

  • Rensch B (1959) Evolution above the species level. Wiley, New York

    Google Scholar 

  • Revell LJ (2010) Phylogenetic signal and linear regression on species data. Methods Ecol Evol 1:319–329

    Article  Google Scholar 

  • Revell LJ, Reynolds G (2012) A new bayesian method for fitting evolutionary models to comparative data with intraspecific variation. Evolution 66:2697–2707

    Article  Google Scholar 

  • Ridley M (1983) The explanation of organic diversity: the comparative method and adaptations for mating. Clarendon Press, Oxford

    Google Scholar 

  • Schluter D, Price T, Mooers AØ, Ludwig D (1997) Likelihood of ancestor states in adaptive radiation. Evolution 51:1699–1711

    Article  Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York

    Google Scholar 

  • Smith RJ, Jungers WL (1997) Body mass in comparative primatology. J Human Evol 32:523–559

    Article  CAS  Google Scholar 

  • Sober E (1984) The nature of selection: evolutionary theory in philosophical focus. Bradford books, Cambridge

    Google Scholar 

  • Sober E (2008) Evidence and evolution: the logic behind the science. Cambridge University press, Cambridge

    Book  Google Scholar 

  • Stone GN, Nee S, Felsenstein J (2011) Controlling for non-independence in comparative analysis of patterns across populations within species. Phil Trans R Soc B 366:1410–1424

    Article  Google Scholar 

  • Voje KL, Hansen TF (2013) Evolution of static allometries: slow rate of adaptive change in allometric slopes of eye span in stalk-eyed flies. Evolution 67:453–467

    Article  Google Scholar 

  • Voje KL, Hansen TF, Egset CK, Bolstad GH, Pélabon C (2014) Allometric constraints and the evolution of allometry. Evolution 68: 866–885

    Article  Google Scholar 

  • Ward R (1903) Records of big game: with the distribution, characteristic, dimensions, weights, and horn and tusk measurements of the different species, 4th edn. Rowland Ward, Limited, London

    Google Scholar 

  • Westoby M, Leishman MR, Lord JM (1995) On misunderstanding the ‘phylogenetic correction’. J Ecol 83:531–534

    Article  Google Scholar 

  • Williams GC (1992) Natural selection: domains, levels, and challenges. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

I thank the editor, László Zsolt Garamszegi, for the invitation to contribute to this volume, and the editor and two anonymous reviewers for helpful comments on an earlier draft. I thank Antonieta Labra for help in developing Figs. 14.3 and 14.4, and Sandrine Hughes for permission to use Fig. 14.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hansen, T.F. (2014). Use and Misuse of Comparative Methods in the Study of Adaptation. In: Garamszegi, L. (eds) Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43550-2_14

Download citation

Publish with us

Policies and ethics