Skip to main content

Abstract

Simulating phylogenetic data is a powerful tool for evolutionists, but this can be a complicated task. This chapter gives an overview on the methods to simulate species traits, particularly on a phylogeny. We show that building from three fundamental models (Brownian motion (BM), Ornstein–Uhlenbeck (OU), and Markov chains (MC)), many biologically relevant scenarios can be simulated. We also review briefly the simulation of phylogenies and the available software for phylogenetic data simulation (PDS). The online materials give several examples, including some complex cases, using R.

The original version of this chapter was revised: Online Practical Material website has been updated. The erratum to this chapter is available at https://doi.org/10.1007/978-3-662-43550-2_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://cran.r-project.org/web/views/Phylogenetics.html

References

  • Brown RP, Yang Z (2011) Rate variation and estimation of divergence times using strict and relaxed clocks. BMC Evol Biol 11:271

    Article  Google Scholar 

  • Etienne RS, Rosindell J (2012) Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Syst Biol 61:204–213

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • FitzJohn RG (2012) Diversitree: comparative phylogenetic analyses of diversification in R. Meth Ecol Evol 3:1084–1092

    Article  Google Scholar 

  • FitzJohn RG, Maddison WP, Otto SP (2009) Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst Biol 58:595–611

    Article  Google Scholar 

  • Gillespie DT (1996) Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys Rev E 54:2084–2091

    Article  CAS  Google Scholar 

  • Hallinan N (2012) The generalized time variable reconstructed birth–death process. J Theor Biol 300:265–276

    Article  Google Scholar 

  • Highton R, Larson A (1979) The genetic relationships of the salamanders of the genus Plethodon. Syst Zool 28:579–599

    Article  Google Scholar 

  • Kendall DG (1948) On the generalized “birth-and-death” process. Ann Math Stat 19:1–15

    Article  Google Scholar 

  • Kozak KH, Mendyk RW, Wiens JJ (2009) Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of North American salamanders. Evolution 63:1769–1784

    Article  Google Scholar 

  • Maddison WP, Midford PE, Otto SP (2007) Estimating a binary character’s effect on speciation and extinction. Syst Biol 56:701–710

    Article  Google Scholar 

  • Massey WA, Whitt W (1998) Uniform acceleration expansions for Markov chains with time-varying rates. Ann Appl Prob 8:1130–1155

    Article  Google Scholar 

  • Molini A, Talkner P, Katul GG, Porporato A (2011) First passage time statistics of Brownian motion with purely time dependent drift and diffusion. Phys A 390:1841–1852

    Article  CAS  Google Scholar 

  • Mooers AØ, Heard SB (1997) Inferring evolutionary process from phylogenetic tree shape. Quart Rev Biol 72:31–54

    Article  Google Scholar 

  • Page RDM (1991) Random dendrograms and null hypotheses in cladistic biogeography. Syst Zool 40:54–62

    Article  Google Scholar 

  • Paradis E (2005) Statistical analysis of diversification with species traits. Evolution 59:1–12

    Article  Google Scholar 

  • Paradis E (2011) Time-dependent speciation and extinction from phylogenies: a least squares approach. Evolution 65:661–672

    Article  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  Google Scholar 

  • Siltaneva J, Mäkinen E (2002) A comparison of random binary tree generators. Comput J 45:653–660

    Article  Google Scholar 

  • Stadler T (2009) On incomplete sampling under birth-death models and connections to the sampling-based coalescent. J Theor Biol 261:58–66

    Article  Google Scholar 

  • Stadler T (2011) Simulating trees with a fixed number of extant species. Syst Biol 60:676–684

    Article  Google Scholar 

  • Sukumaran J, Holder MT (2010) DendroPy: a Python library for phylogenetic computing. Bioinformatics 26:1569–1571

    Article  CAS  Google Scholar 

  • Vos RA, Caravas J, Hartmann K, Jensen MA, Miller C (2011) BIO: Phylo-phyloinformatic analysis using perl. BMC Bioinformatics 12:63

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to László Zsolt Garamszegi for inviting me to write this chapter. Many thanks to Matthew Pennell and an anonymous reviewer for their positive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Paradis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paradis, E. (2014). Simulation of Phylogenetic Data. In: Garamszegi, L. (eds) Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43550-2_13

Download citation

Publish with us

Policies and ethics