Skip to main content

An Introduction to the Phylogenetic Comparative Method

  • Chapter

Abstract

The phylogenetic comparative method (PCM) has an important place in evolutionary biology. This chapter aims at giving an overview on some selected topics. We first review briefly some important historical milestones including some early contributions and the relationships of comparative methods with phylogenetics. Some fundamental points on statistical inference, adaptation, and causality are then discussed. We also discuss briefly the application of the PCM to anthropology and conclude with some perspectives on its future development and applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://en.wikipedia.org/wiki/Apples_and_oranges

References

  • Bartoszek K, Pienaar J, Mostad P, Andersson S, Hansen TF (2012) A phylogenetic comparative method for studying multivariate adaptation. J Theor Biol 314:204–215

    Article  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  CAS  Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Article  Google Scholar 

  • Blomberg SP, Lefevre JG, Wells JA, Waterhouse M (2012) Independent contrasts and PGLS regression estimators are equivalent. Syst Biol 61:382–391

    Article  Google Scholar 

  • Bock KE (1966) The comparative method of anthropology. Comp Stud Soc Hist 8:269–280

    Article  Google Scholar 

  • Bock WJ (1959) Preadaptation and multiple evolutionary pathways. Evolution 13:194–211

    Article  Google Scholar 

  • Bock WJ (2003) Ecological aspects of the evolutionary processes. Zool Sci 20:279–289

    Article  Google Scholar 

  • Borgerhoff Mulder M, Nunn CL, Towner MC (2006) Cultural macroevolution and the transmission of traits. Evol Anthropol 15:52–64

    Article  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis models and estimation procedures. Am J Hum Genet 19:233–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheverud JM, Dow MM, Leutenegger W (1985) The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism in body weight among primates. Evolution 39:1335–1351

    Article  Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial and temporal analysis: autocorrelation in space and time. In: Wrigley EN, Bennett RJ (eds) Quantitative geography: a british view. Routledge & Kegan Paul, London, pp 104–110

    Google Scholar 

  • Clutton-Brock TH, Harvey PH (1979) Comparison and adaptation. Proc R Soc Lond B 205:547–565

    Article  CAS  Google Scholar 

  • Cuvier G (1798) Tableau élémentaire de l’histoire naturelle des animaux. Baudouin, Paris

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • Eastman JM, Harmon LJ, Tank DC (2013) Congruification: support for time scaling large phylogenetic trees. Meth Ecol Evol 4:688–691

    Article  Google Scholar 

  • Felsenstein J (1973) Maximum-likelihood estimation of evolutionary trees from continuous characters. Am J Hum Genet 25:471–492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  • Felsenstein J (2005) Using the quantitative genetic threshold model for inferences between and within species. Phil Trans R Soc Lond B 360:1427–1434

    Article  Google Scholar 

  • Felsenstein J (2008) Comparative methods with sampling error and within-species variation: contrasts revisited and revised. Am Nat 171:713–725

    Article  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection (a complete variorum edition, 1999). Oxford University Press, Oxford

    Google Scholar 

  • Forster P, Toth A, Bandelt HJ (1998) Evolutionary network analysis of word lists: visualising the relationships between Alpine romance languages. J Quant Linguist 5:174–187

    Article  Google Scholar 

  • Freedman DA (2009) Statistical models: theory and practice (revised edition). Cambridge University Press, Cambridge

    Google Scholar 

  • Garamszegi LZ, Møller AP (2010) Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol Rev 85:797–805

    Google Scholar 

  • Gittleman JL, Kot M (1990) Adaptation: statistics and a null model for estimating phylogenetic effects. Syst Zool 39:227–241

    Article  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Phil Trans R Soc Lond B 326:119–157

    Article  CAS  Google Scholar 

  • Grafen A, Ridley M (1997) A new model for discrete character evolution. J Theor Biol 184:7–14

    Article  CAS  Google Scholar 

  • Grandcolas P, Nattier R, Legendre F, Pellens R (2011) Mapping extrinsic traits such as extinction risks or modelled bioclimatic niches on phylogenies: does it make sense at all? Cladistics 27:181–185

    Article  Google Scholar 

  • Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23:494–508

    Article  CAS  Google Scholar 

  • Hadjipantelis PZ, Jones NS, Moriarty J, Springate DA, Knight CG (2013) Function-valued traits in evolution. J R Soc Interface 10(20121):032

    Google Scholar 

  • Haeckel E (1887) Report on the Radiolaria collected by H.M.S. Challenger during the years 1873–1876. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Hansen TF, Martins EP (1996) Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution 50:1404–1417

    Article  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Houwing-Duistermaat JJ, van Houwelingen HC, Terhell A (1998) Modelling the cause of dependency with application to filaria infection. Statist Med 17:2939–2954

    Article  CAS  Google Scholar 

  • Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491:444–448

    Article  CAS  Google Scholar 

  • Jombart T, Pavoine S, Devillard S, Pontier D (2010) Putting phylogeny into the analysis of biological traits: a methodological approach. J Theor Biol 264:693–701

    Article  Google Scholar 

  • Kiekbaev DI (2003) Comparative law: method, science or educational discipline? Electronic journal of comparative law 7.3. url http://www.ejcl.org/73/art73-2.html

  • Kuhn TS, Mooers AO, Thomas GH (2011) A simple polytomy resolver for dated phylogenies. Meth Ecol Evol 2:427–436

    Article  Google Scholar 

  • Lamarck JB (1809) Philosophie zoologique. Flammarion (1994 edition), Paris

    Google Scholar 

  • Lapiedra O, Sol D, Carranza S, Beaulieu JM (2013) Behavioural changes and the adaptive diversification of pigeons and doves. Proc R Soc Lond B 280(20122):893

    Google Scholar 

  • Laurent G (1986) Cuvier et Lamarck: la querelle du catastrophisme. La Recherche 17:1510–1518

    Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Leroi AM, Rose MR, Lauder GV (1994) What does the comparative method reveal about adaptation? Am Nat 143:381–402

    Article  Google Scholar 

  • Lindenfors P, Jansson F, Sandberg M (2011) The cultural evolution of democracy: saltational changes in a political regime landscape. PLoS ONE 6:e28270

    Article  CAS  Google Scholar 

  • Losos JB (1994) An approach to the analysis of comparative data when a phylogeny is unavailable or incomplete. Syst Biol 43:117–123

    Article  Google Scholar 

  • Losos JB (2011) Convergence, adaptation, and constraint. Evolution 65:1827–1840

    Article  Google Scholar 

  • Lynch M (1991) Methods for the analysis of comparative data in evolutionary biology. Evolution 45:1065–1080

    Article  Google Scholar 

  • Mace R, Pagel M (1994) The comparative method in anthropology (with discussion). Curr Anthropol 35:549–564

    Article  Google Scholar 

  • Martins EP (1996) Conducting phylogenetic comparative studies when the phylogeny is not known. Evolution 50:12–22

    Article  Google Scholar 

  • Martins EP (2000) Adaptation and the comparative method. Trends Ecol Evol 15:296–299

    Article  CAS  Google Scholar 

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667 erratum vol 153, p 488

    Article  Google Scholar 

  • Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T, Schiffers K, Thuiller W (2012) How to measure and test phylogenetic signal. Meth Ecol Evol 3:743–756

    Article  Google Scholar 

  • Ollier S, Couteron P, Chessel D (2006) Orthonormal transform to decompose the variance of a life-history trait across a phylogenetic tree. Biometrics 62:471–477

    Article  CAS  Google Scholar 

  • O’Meara BC, Ané C, Sanderson MJ, Wainwright PC (2006) Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922–933

    Article  Google Scholar 

  • Pagel M (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc Lond B 255:37–45

    Article  Google Scholar 

  • Pagel M, Meade A (2006) Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am Nat 167:808–825

    PubMed  Google Scholar 

  • Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Biol 53:673–684

    Article  Google Scholar 

  • Pagel MD, Harvey PH (1988) Recent developments in the analysis of comparative data. Quart Rev Biol 63:413–440

    Article  CAS  Google Scholar 

  • Paradis E, Claude J (2002) Analysis of comparative data using generalized estimating equations. J Theor Biol 218:175–185

    Article  Google Scholar 

  • Pavoine S, Ollier S, Pontier D, Chessel D (2008) Testing for phylogenetic signal in phenotypic traits: new matrices of phylogenetic proximities. Theor Pop Biol 73:79–91

    Article  Google Scholar 

  • Pavoine S, Baguette M, Bonsall MB (2010) Decomposition of trait diversity among the nodes of a phylogenetic tree. Ecol Monogr 80:485–507

    Article  Google Scholar 

  • Pennell MW, Harmon LJ (2013) An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Ann NY Acad Sci 1289:90–105

    Article  Google Scholar 

  • Pepin KM, Lass S, Pulliam JRC, Read AF, Lloyd-Smith JO (2010) Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol 8:802–813

    Article  CAS  Google Scholar 

  • Revell LJ (2009) Size-correction and principal components for interspecific comparative studies. Evolution 63:3258–3268

    Article  Google Scholar 

  • Rohlf FJ (2006) A comment on phylogenetic correction. Evolution 60:1509–1515

    Article  Google Scholar 

  • Santos JC, Cannatella DC (2011) Phenotypic integration emerges from aposematism and scale in poison frogs. Proc Natl Acad Sci USA 108:6175–6180

    Article  CAS  Google Scholar 

  • Shipley B (2013) The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94:560–564

    Article  Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York

    Google Scholar 

  • Smith SA, Beaulieu JM, Stamatakis A, Donoghue MJ (2011) Understanding angiosperm diversification using small and large phylogenetic trees. Am J Bot 98:404–414

    Article  Google Scholar 

  • Spreitzer RJ, Peddi SR, Satagopan S (2005) Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal Rubisco. Proc Natl Acad Sci USA 102:17225–17230

    Article  CAS  Google Scholar 

  • Stone GN, Nee S, Felsenstein J (2011) Controlling for non-independence in comparative analysis of patterns across populations within species. Phil Trans R Soc Lond B 366:1410–1424

    Article  Google Scholar 

  • Thomas GH, Hartmann K, Jetz W, Joy JB, Mimoto A, Mooers AO (2013) PASTIS: an R package to facilitate phylogenetic assembly with soft taxonomic inferences. Meth Ecol Evol 4:1011–1017

    Article  Google Scholar 

  • Tiao GC, Reinsel GC, Xu DM, Pedrick JH, Zhu XD, Miller AJ, DeLuisi JJ, Mateer CL, Wuebbles DJ (1990) Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation. J Geophys Res-Atmos 95:20507–20517

    Article  Google Scholar 

  • von Hardenberg A, Gonzalez-Voyer A (2013) Disentangling evolutionary cause-effect relationships with phylogenetic confirmatory path analysis. Evolution 67:378–387

    Article  Google Scholar 

  • Watt WB (2013) Causal mechanisms of evolution and the capacity for niche construction. Biol Philos 28:757–766

    Article  Google Scholar 

  • Whitney KD, Boussau B, Baack EJ, Garland T (2011) Drift and genome complexity revisited. PLoS Genet 7(e1002):092

    Google Scholar 

  • Yan XH, Gurtler JB, Fratamico PM, Hu J, Juneja VK (2012) Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food. Cell Biosci 2:39

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to László Zsolt Garamszegi for inviting me to write this chapter. Many thanks to two anonymous reviewers for their positive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Paradis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paradis, E. (2014). An Introduction to the Phylogenetic Comparative Method. In: Garamszegi, L. (eds) Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43550-2_1

Download citation

Publish with us

Policies and ethics