Skip to main content
  • 3 Accesses

Abstract

Crystalline polymers show a remarkable strain hardening in its plastic deformation compared with metals. In the case of metals, the power law holds between true stress and true strain, the power law index of which is lower than one (1). True stress tends to saturate with increasing true strain. Polymer chain shows very high modulus and high bonding energy along molecular axis, whereas intermolecular force is weak and the modulus perpendicular to the molecular axis is about one hundredth of that along molecular axis. With the progress of unfolding of molecular chains from folded structure in lamellar crystals, the deformation stress increases rapidly. To describe such a deformation process of crystalline polymers, it is especially necessary to employ true stress and true strain instead of nominal stress and nominal strain. In our previous paper (2), we have presented the equation to describe the true stress-strain relationship in a very simplified form, which was verified for linear polyethylene (HDPE) and nylon 6. In this paper, we have examined the applicability of our equation to isotactic polypropylene (PP), polyoxymethylene (POM) and polytetrafluoroethylene (PTFE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ref. to Dieter, G., Mechanical Metallurgy, p. 247 (New York 1961).

    Google Scholar 

  2. Maruyama, S., K. Imada, and M. Takayanagi, Intern. J. Polymeric Mater. 1, 211 (1972).

    Article  Google Scholar 

  3. Shimanouchi, T., M. Ashida, and S. Enomoto, J. Polymer Sci. 59, 93 (1962).

    Article  ADS  Google Scholar 

  4. Geil, P. H., J. Polymer Sci. 44, 449 (1960).

    Article  ADS  Google Scholar 

  5. Kojima, M., J. Polymer Sci. A-2, 5, 597 (1967).

    Article  Google Scholar 

  6. Kajiyama, T., T. Okada, A. Sakoda, and M. Takayanagi, J. Macromol. Sci-Phys. B7(3), 583 (1973).

    Article  Google Scholar 

  7. Peterlin, A., a) J. Polymer Sci., C (9), 61 (1965).

    Google Scholar 

  8. ibid., C (15), 427 (1967).

    Google Scholar 

  9. ibid, C (18), 123 (1967).

    Google Scholar 

  10. Peterlin, A., Kolloid-Z. u. Z. Polymere 216/217, 129 (1967).

    Article  Google Scholar 

  11. Peterlin, A., Kolloid-Z. u. Z. Polymere, 233, 857 (1969).

    Google Scholar 

  12. Peterlin, A., Polymer Eng. & Sci. 8, 172 (1969).

    Article  Google Scholar 

  13. Peterlin, A., Man made fibers (eds. Mark, Atlas, and Cernia), Vol. 1, p.283 (New York 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takayanagi, M., Imada, K., Maruyama, S., Nakamura, K. (1975). General equation of stress-strain behavior in crystalline polymers. In: Vallet, G., Meskat, W. (eds) Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-41458-3_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41458-3_84

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0424-0

  • Online ISBN: 978-3-662-41458-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics