Skip to main content
  • 2 Accesses

Abstract

Internal viscosity was introduced in the model of randomly coiled macromolecule by Kuhn and Kuhn (1) in order to explain the gradient dependence of intrinsic viscosity. In laminar flow with transverse gradient the molecule rotates with an angular velocity equal to half the gradient and during each rotation gets twice extended and twice compressed. Hence the amplitude and the frequency of shape change are increasing almost linearly, the rate of deformation quadratically with the gradient. The resistance of the macro-molecular chain to rapid change of shape reduces the coil deformation below the value expected for a completely flexible elastic dumbbell or necklace model. As a consequence, the increase of end-to-end distance cannot compensate the decrease of viscosity contribution caused by chain orientation so that with increasing gradient the intrinsic viscosity drops below the initial value at zero gradient. The effect is extreme for perfectly rigid molecule and disappears for ideally flexible coil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuhn, W. and H. Kuhn, Helv. Chim. Acta 29, 609, 830 (1946).

    Article  Google Scholar 

  2. Čopič, M., J. Chim. Phys. 54, 348 (1956).

    Google Scholar 

  3. Peterlin, A. and M. Čopič, J. Appl. Phys. 27, 434 (1956).

    Article  ADS  Google Scholar 

  4. Ikeda, E., Phys. Soc. Japan 12, 378 (1957).

    Article  ADS  Google Scholar 

  5. Zimm, B. Z., J. Chem. Phys. 24, 269 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  6. Peterlin, A., J. Chem. Phys. 33, 1799 (1960).

    Article  ADS  Google Scholar 

  7. Fixmann, M., J. Chem. Phys. 5, 793 (1966).

    Article  ADS  Google Scholar 

  8. Leray, J., Compt. Rend. Acad. Sci. (Paris) 241, 1741 (1955).

    Google Scholar 

  9. Leray, J., J. Polymer Sci. 23, 167 (1957).

    Article  Google Scholar 

  10. Cerf, R., Compt. Rend. Acad. Sci. (Paris) 230, 81 (1950).

    Google Scholar 

  11. Cerf, R., J. Chim. Phys. 48, 85 (1951).

    Google Scholar 

  12. Tsvetkov, V. N. and V. P. Budtov, Vysokomol. Soedin 6, 1209 (1964).

    Google Scholar 

  13. Cerf, R., J. Phys. & Radium 19, 122 (1958).

    Article  MATH  Google Scholar 

  14. Cerf, R., Adv. Polymer Sci. 1, 382 (1959).

    Article  Google Scholar 

  15. Chaffey, C., J. Chem. Phys. 63, 1385 (1966).

    Google Scholar 

  16. Janeschitz-Kriegl, H., Adv. Polymer Sci. 6, 170 (1969).

    Article  Google Scholar 

  17. Philippoff, W., Trans. Soc. Rheol. 8, 117 (1964).

    Article  Google Scholar 

  18. Ferry, J. D., L. A. Holmes, J. Lamb, and A. J. Matheson, J. Chem. Phys. 70, 1685 (1966).

    Article  Google Scholar 

  19. Massa, D. J., J. L. Schrag, and J. D. Ferry, Macromol. 4, 210 (1961).

    Article  ADS  Google Scholar 

  20. Osaki, K. and J. L. Schräg, Polymer J. Japan 2, 541 (1971).

    Article  Google Scholar 

  21. Peterlin, A., Kolloid-Z. u. Z. Polymere 209, 181 (1966).

    Article  Google Scholar 

  22. Peterlin, A., J. Polymer Sci. A-2, 5, 179 (1967).

    Article  Google Scholar 

  23. Peterlin, A. and C. Reinhold, Trans. Soc. Rheol. 11:1,15(1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peterlin, A. (1975). Molecular model of internal viscosity. In: Vallet, G., Meskat, W. (eds) Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-41458-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41458-3_61

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0424-0

  • Online ISBN: 978-3-662-41458-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics