Skip to main content
  • 1 Accesses

Abstract

Nearly all the textile synthetic fibres now available are industrially produced by bringing a spinnable material into liquid state, molten or concentrated solution, and forcing it through a small die to form a free liquid jet at the exit. This solidifies as it proceeds along the spinning path and the solid fibre is collected on a rotating drum. Solidification is due to cooling in the melt spinning, to evaporation of solvent in the dry spinning or to precipitation of polymer from solution in wet-spinning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

F r :

Froude number U 2 0/gR 0 with g acceleration gravity (cm/sec2)

N u :

Nusselt’ number 2Rh/Ka with h heat transfer coefficient (cal/cm2 sec °C) and Ka air thermal conductivity (cal/cm sec °C) around the forming fibre

Q :

Volume rate of flow (cm3/sec)

r :

Radial distance from the central axis of the fibre (cm)

R :

Cross section radius of the fibre (cm)

R 0 :

Inside diameter of the nozzle (cm)

t :

Quenching time (sec)

T a T s :

Temperature of fibre at the centre (°C)

T i :

Initial temperature at the distance x = 0 (°C)

T o :

Mean value of temperature of air surrounding the forming fibre (°C)

U 0 :

Mean value of velocity of glass at x = 0 (cm/sec)

V :

Local velocity of fibre in the axial direction (cm/sec)

x :

Axial distance of the fibre from the nozzle exit (cm/sec)

W :

Weight rate of flow (g/minute)

W e :

Weber number ϱ U 2 0 R 0

α:

Glass surface tension (dynes/cm)

φ:

Angle between the fibre axis and the tangent to the fibre surface in the r, x plane (radiant).

v :

Air kinematic viscosity (cm2/sec)

ϱ:

Glass density (g/cm3)

η:

Glass viscosity (poises)

ηi :

Glass viscosity at T t.

τ:

Maxwell relaxation time η/G (sec) with G (dynes/cm2) elastic shear modulus of glass

References

  1. Ziabicki, A., Principles of spinning. Man Made Fibres, Science and Technology, Vol. 1, Edited by Mark, Atlas, Cernia (New York 1967).

    Google Scholar 

  2. Acierno, D., J. N. Dalton, J. M. Rodriguez and J. L. White, J. Appl. Poly. Sci. 15, 2395–2415 (1971).

    Article  Google Scholar 

  3. Thomas, W. F., Phys. Chem. Glasses 1, 4–18 (1960).

    Google Scholar 

  4. Burgman, J. A. and E. M. Hunia, Glass Technology 11, 147–152 (1970).

    Google Scholar 

  5. Anderson, O. L., J. Appl. Physics 29, 9–12 (1958).

    Article  ADS  Google Scholar 

  6. Bateson, S., J. Appl. Physics, 29, 13–21 (1958).

    Article  ADS  Google Scholar 

  7. Aslanova, M. S. and V. E. Khazanov, Steklo Keram. 25, 9, 1–4 (1968).

    Google Scholar 

  8. Bruckner, R., The structure of glass fibres, in particular glass fibres. VII Congrès International du Verre, Paper n. 38, Bruxelles 1965.

    Google Scholar 

  9. Manfrè, G., Some rheological aspects in spinning glass fibres. VII Congrès International du Verre, Paper n. 78, Bruxelles 1965.

    Google Scholar 

  10. Deeg, E. and A. Dietzel, Glastech. Ber. 28, 221–232 (1955).

    Google Scholar 

  11. Manfrè, G., Verres et Réfractaires 26, 57–65 (1972).

    Google Scholar 

  12. Glicksman, L. R., Trans. ASME, J. Basic Engineering 90, 343–354 (1968).

    Article  Google Scholar 

  13. Manfrè, G., Temperature profile of drawing zone in spinning continuous glass fibres. Autumn Meeting Amer. Cer. Soc, Bedford Springs (USA), (1967).

    Google Scholar 

  14. Krishman, S. and L. R. Glicksman, Trans. ASME, J. Basic Engineering, Paper n. 70 — WA/FE — 3 (1970).

    Google Scholar 

  15. Sununu, J. H. and G. A. Brown, Trans. ASME, J. Basic Engineering, Paper n. 70 — WA/HT — 12 (1970).

    Google Scholar 

  16. Glicksman, L. R., Glass Technology 9, 131–138 (1968).

    Google Scholar 

  17. Manfrè, G., Survey of cooling rate of glass fibres. Autumn Meeting Am. Cer. Soc, Bedford Springs (USA), (1967).

    Google Scholar 

  18. Arridge, R. G. C. and K. Prior, Nature 203, 386–387 (1964).

    Article  ADS  Google Scholar 

  19. Manfrè, G., Glass Technology 10, 99–106 (1969).

    Google Scholar 

  20. Khodakovskii, M.D. and S.A. Kutunov, Steklo Kera-mics 21, 2, 3–10 (1964).

    Google Scholar 

  21. Burgman, J. A., Glass Technology 11, 110–116 (1970).

    Google Scholar 

  22. Zawadcki, A., Szklo I Ceramic 18, 40–44 (1967).

    Google Scholar 

  23. Ziabicki, A., Kinetics of polymer crystallization and molecular orientation in the course of melt spinning. Applied Polymer Symposia n. 6, Fiber Spinning and Drawing, p. 1-18 (New York).

    Google Scholar 

  24. Kase, S. and T. Matsuo, J. Polymer Sci. Part A 3, 2541–2554 (1965).

    Google Scholar 

  25. Kase, S. and T. Matsuo, J. Polymer Sci. Part A Part A 11, 251–287 (1966).

    Google Scholar 

  26. Manfrè, G., Two dimensional analysis of the drawing zone in liquid molten spinning. Paper presented at the Euromech Colloquium 37 on Fluid Mechanics and Polymer Processing, Naples, 20–23 June (1972), (in press).

    Google Scholar 

  27. Ziabicki, A. and R. Takserman-Krozer, Roczniki Chemii, 37, 1511–1520,(1963).

    Google Scholar 

  28. Blokh, K. I, Relaxation theory of glass formation and strength of glass fibres. The structure of glass, Vol. 6, 222–224, Edited by Porai-Koshits (New York 1966).

    Google Scholar 

  29. Dusollier, G. and J. Robredo, Verres Réfract. 24, 2, 63–70 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manfrè, G. (1975). Rheology on the drawing zone in glass spinning. In: Vallet, G., Meskat, W. (eds) Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-41458-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41458-3_44

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0424-0

  • Online ISBN: 978-3-662-41458-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics