Skip to main content

Application of large elastic deformation theory to the calculation of liquid drop shapes of some polymers

  • Chapter
  • 2 Accesses

Abstract

Boundary tension is the best known property of liquid surfaces. This property is of outstanding importance in the phenomenon of adhesion which is an interdisciplinary subject involving surface chemistry, rheology, polymer physics, and fracture mechanics. Adhesion plays an important role in various industrial applications such as in packaging, construction and manufacturing. Also, the behavior of solder and printing inks in their respective practical applications is influenced by boundary tension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bashforth, F. and J. C. Adams, An Attempt to Test the Theories of Capillary Action (Cambridge, England 1883).

    Google Scholar 

  2. Fordham, S., Proc. Roy. Soc. A 194, 1 (London 1948).

    Article  ADS  Google Scholar 

  3. Staicopolus, D. N., J. Colloid Sci. 17, 439 (1962).

    Article  Google Scholar 

  4. Niederhauser, D. O. and F. E. Bartell, Report of Progress — Fundamental Research on Occurrence and Recovery of Petroleum, 1948–1949 (Baltimore, Maryland 1950).

    Google Scholar 

  5. Hybart, F. J. and T. R. White, J. Appl. Polymer Sci. 3, 118 (1960).

    Article  Google Scholar 

  6. Sakai, T., Polymer 6, 659 (1965).

    Article  Google Scholar 

  7. Schornhorn, H. and L. H. Sharpe, J. Poly. Sci. A3, 569 (1965).

    Google Scholar 

  8. Dettre, R. H. and R. E. Johnson, J. Colloid Interface Sci. 21, 367 (1966).

    Article  Google Scholar 

  9. Patterson, H. T., K. H. Hu, and T. H. Grindstaff, J.Poly. Sci. C 34, 31(1971).

    Google Scholar 

  10. Roe, R. J., J. Phys. Chem. 72, 2013 (1968).

    Article  Google Scholar 

  11. Wu, S., J. Colloid Interface Sci. 31, 153 (1969).

    Article  Google Scholar 

  12. Green, A. E. and J. E. Adkins, Large Elastic Deformations and Nonlinear Continuum Mechanics (Oxford, England 1960).

    Google Scholar 

  13. Yu, L. K. and K. C. Valanis, Trans. Soc. Rheology 14, 159 (1970).

    Article  ADS  MATH  Google Scholar 

  14. Avula, X. J. R., Proc. Sixth Southeastern Conference Theor. Appl. Mech. (Tampa, Florida 1972).

    Google Scholar 

  15. Stauffer, C. E., J. Phys. Chem. 69, 1933 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Avula, X.J.R. (1975). Application of large elastic deformation theory to the calculation of liquid drop shapes of some polymers. In: Vallet, G., Meskat, W. (eds) Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-41458-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41458-3_21

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0424-0

  • Online ISBN: 978-3-662-41458-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics