Skip to main content

The bulk stress in a suspension of spheres to order c 2

  • Chapter
  • 1 Accesses

Abstract

An exact formula is obtained for the term of order c 2 in the expression for the bulk stress in a suspension of force-free spherical particles in Newtonian ambient fluid, where c is the volume fraction of the spheres and c ≪ 1. The particles may be of different sizes, and composed of either solid or fluid of arbitrary viscosity. The method of derivation circumvents the familiar obstacle, of non-absolutely convergent integrals representing the effect of all pair interactions in which one specified particle takes part, by the judicious use of a certain quantity which is affected by the presence of distant particles in a similar way and whose mean value in known exactly. The bulk stress is in general of non-Newtonian form and depends on the statistical properties of the suspension which in turn are dependent on the type of bulk flow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Batchelor, G.K., Green, J.T. (1975). The bulk stress in a suspension of spheres to order c 2 . In: Vallet, G., Meskat, W. (eds) Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-41458-3_205

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41458-3_205

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0424-0

  • Online ISBN: 978-3-662-41458-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics