Skip to main content
  • 2 Accesses

Abstract

Extensive work has been done on the effect of the introduction of low molecular weight liquids (plasticizers) into high molecular weight polymer systems (1–3). By plasticizing, one in effect decreases the chain-chain interactions that are present in the bulk. This has been described by a free volume model (4, 5). The examination of plasticized systems leads to information regarding the polymer structure in very concentrated solution. The aims of this investigation are to compare the viscoelastic properties of the plasticized system for solvents of differing thermodynamic compatibility, and to examine the phenomenon of molecular plasticization as contrasted to plasticization of supermolecular or secondary structure (6, 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferry, J. D., Viscoelastic Properties of Polymers (New York 1961).

    Google Scholar 

  2. Bondi, A., Physical Properties of Molecular Crystals, Liquids and Glasses (New York 1968).

    Google Scholar 

  3. Platzer, N. A. J., (Ed.), Plasticization and Plasticizer Processes (Amer. Chem. Soc, Washington, D. C, 1965).

    Google Scholar 

  4. Kelly, F. N. and F. Bueche, J. Polymer Sci. 50, 549 (1961).

    Article  ADS  Google Scholar 

  5. Braun, G. and A. J. Kovacs, Physics of non-crystalline Solids, Proceedings of the International Conference, Delft, July 1964, p. 303 (Amsterdam 1965).

    Google Scholar 

  6. Kargin, V. A., P. V. Kozlov, and R. M. Assimova, Doklady Akademii Nauk SSR, 1352, 1037 (1960) (p. 357 in Russ. pag.).

    Google Scholar 

  7. Kargin, V. A. and A. I. Kitaigorodsky, Kolloid Zh. 19, 141 (1957) (p. 131 in Russ. pag.).

    Google Scholar 

  8. Kiley, L. R., Anal. Chem. 29, 1895 (1957).

    Article  Google Scholar 

  9. Martin, A. E. and H. F. Rase, I & EC Product Res. Development 6, 104 (1967).

    Google Scholar 

  10. Ferry, J. D., Viscoelastic Properties of Polymers, p. 356 (New York 1961).

    Google Scholar 

  11. Iiters, K. H and E. Jenckel, Rheol. Acta 1, 322 (1958).

    Article  Google Scholar 

  12. Quadrat, O. and M. Bohdanecký, J. Polymer Sci. C6, 769 (1968).

    Article  Google Scholar 

  13. Carpenter, M. R., D. B. Davies, and A. J. Matheson, J. Chem. Phys. 46, 2451 (1967).

    Article  ADS  Google Scholar 

  14. Struik, L. C. E., Rheol. Acta 5, 303 (1966).

    Article  Google Scholar 

  15. Turley, S. G., J. Polym. Sci., C 1, 101 (1963).

    Article  Google Scholar 

  16. Tobolsky, A. V., J. J. Aklonis, and G. Akovali, J. Chem. Phys. 42, 723 (1965).

    Article  ADS  Google Scholar 

  17. Hopkins, I. L. and R. W. Hamming, J. Appl. Phys. 28, 906 (1957).

    Article  ADS  Google Scholar 

  18. Chapoy, L. L. and A. V. Tobolsky, Chemica Scripta 2, 44 (1972).

    Google Scholar 

  19. Kishimoto, A., H. Fujita, J. Polym. Sci. 28, 547 (1958).

    Article  ADS  Google Scholar 

  20. Kishimoto, A. and H. Fujita, J. Polym. Sci. 28, 569 (1958).

    Article  ADS  Google Scholar 

  21. Gribkova, N. Ya., P. V. Kozlov, and S. V. Yakubovich, Polym. Sci. U.S.S.R. 7, 831 (1965).

    Article  Google Scholar 

  22. Kargin, V. A., P. V. Kozlov, and Wang Nai-Ch’ang, Doklady Akademii Nauk SSR 130, 33 (1960) (p. 356 in Russ. pag.).

    Google Scholar 

  23. Kargin, V.A., Russian Chem. Rev. 35, 427 (1966).

    Article  ADS  Google Scholar 

  24. Natov, M. A. and Ye. Khr. Dzhagarova, Polym. Sci. U.S.S.R. 8, 2032 (1966).

    Article  Google Scholar 

  25. Dreval, V. Ye., M. S. Lutskii, A. A. Tager, V. K. Postikov, O. S. Khvatova, and G. V. Vinogradov, Polym. Sci. U.S.S.R. 9, 345 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chapoy, L.L. (1975). Properties and structure of concentrated polystyrene solutions. In: Vallet, G., Meskat, W. (eds) Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-41458-3_190

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41458-3_190

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0424-0

  • Online ISBN: 978-3-662-41458-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics