Skip to main content
  • 8 Accesses

Abstract

The term “die swell” is commonly used to describe the increase of diameter of polymeric extrudate upon emerging from the extrusion die. Understanding the phenomenon is very important in the extrusion of thermoplastics and elastomers. Some progress has been made in interpreting the phenomenon (1). However, the practical requirement as well as the critical test for any interpretation are quantitative prediction of the die swell at a given condition of extrusion. Presently available theories have not been adequately demonstrated to fulfill this need (2 to 4). This is particularly true with the shorter dies, where the die swell depends on the memory of the deformation at the die entrance. This paper describes a technique, by which die swell can be quantitatively calculated within the precision required in practice. The method is based on the theoretical interpretations developed previously (5, 6). Several samples of linear polyethylenes are used to illustrate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagley, E. B. and H. P. Schreiber, Rheology. Theory and Application, edited by F. R. Eirich, vol. 5, pp. 93-125 (New York 1969).

    Google Scholar 

  2. Graessley, W. W., S. D. Glasscock, and R. L. Crawley, Trans. Soc. Rheol. 14:4, 519 (1970).

    Article  Google Scholar 

  3. Tanner, R. I., J. Polym. Sci. A-2, 8, 2067 (1970).

    Article  Google Scholar 

  4. Bagley, E. B. and H. J. Duffey, Trans. Soc. Rheol. 14:4, 545 (1970).

    Article  Google Scholar 

  5. Nakajima, N. and M. Shida, Trans. Soc. Rheol. 10:1, 299 (1966).

    Article  Google Scholar 

  6. Nakajima, N. and M. Shida, Proceedings of International Conference on Mechanical Behavior of Materials, Vol. III, 485 (1972).

    Google Scholar 

  7. Bagley, E. B., J. Appl. Phys. 28, 624 (1957).

    Article  ADS  Google Scholar 

  8. Amer. Soc. for Testing Materials, Standard, ASTM 1238-57T, 1957.

    Google Scholar 

  9. Sabia, R., J. Appl. Polym. Sci. 7, 347 (1963).

    Google Scholar 

  10. Nakajima, N., J. Appl. Polym. Sci. 14, 2661 (1970).

    Article  Google Scholar 

  11. Sabia, R., J. Appl. Polym. Sci. 8, 1651 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakajima, N. (1975). Can die swell be predicted?. In: Vallet, G., Meskat, W. (eds) Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-41458-3_152

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41458-3_152

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0424-0

  • Online ISBN: 978-3-662-41458-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics