Skip to main content
  • 8 Accesses

Abstract

The main difficulty in dealing with the present subject lies in formulating and classifying the variables. Most cases of a structural element exposed to an external environment involve at least three simultaneous time varying factors — temperature, humidity and load — which, in view of the coupling between them and their interactive effect on the material, do not lend themselves to simple isolation or superposition.

Sponsored by the U.S. Department of Commerce, National Bureau of Standards Contract No. NBS(G)-135.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a :

Water content.

c :

Crack or flaw dimension, perpendicular to tensile stress direction.

C m , C f :

Matrix and fiber volume contents respectively.

α:

Coefficient of thermal expansion.

α i :

Ratio of initial failure stress to the ultimate reference one.

γ:

Specific surface energy.

γ d :

Specific surface energy of dry glass surface.

γ w :

Specific surface energy of wet glass surface (by water adsorbtion).

E :

Tensile Youngs modulus.

E f :

Fiber Youngs modulus.

E m :

Matrix Youngs modulus.

m :

Modular ratio.

l, Δl :

Length and change of length respectively.

W, ΔW :

Weight and change of weight respectively.

t :

Time.

T :

Temperature.

σ:

Tensile stress.

σ u :

Ultimate tensile stress.

σ0 u :

Ultimate tensile stress of specimens stored and tested at reference environmental conditions (22 °C, 50% R.H.).

σH :

Tensile stress applied during environmental-loading history.

σH u :

Current tensile strength of specimens tested at their E.L.H. conditions.

σH u :

Initial failure tensile stress, determined by onset of R.L.S. reduction.

σd u :

Tensile strength of specimens at dry environment.

σw u :

Tensile strength of specimens at humid, environment.

σ uc :

Composite strength.

σ uf , σ um :

Fiber and matrix strength respectively.

ϱ:

Density.

L :

Loading condition.

W :

Cold water environment (R.T.)

T :

Dry hot environment (80 °C).

W+ T.:

Hot water environment (80 °C).

W+L :

Loading at cold water environment (R.T.).

W + L+ T :

Loading at hot water environment (80 °C).

E.L.H.:

Environmental loading history.

G.R.P.:

Glass reinforced plastics.

C.L.S.:

Current longitudinal strength.

R.L.S.:

Residual longitudinal strength.

U.D.F.:

Unidirectional fabric laminate.

References

  1. Griffith, A. A., Phil. Rans. Roy. Soc. (London) A221, 163 (1920).

    ADS  Google Scholar 

  2. Hollinger, D. L. and H. T. Plant, Annual Technical Conf. 1962, R.P., SPI, Section 13-B.

    Google Scholar 

  3. Johanson, O. et al., Dow Corning Corporation, Midland, Michigan, Sept. 1965 (AD 629777).

    Google Scholar 

  4. Charles, R. J., J. Appl. Phys. 29, 1549–1553 (1958).

    Article  ADS  Google Scholar 

  5. Charles, R. J., J. Appl. Phys. 29, 1549–1553 (1958).

    Article  ADS  Google Scholar 

  6. Barker, A. J. and R. T. Bott, Trans. Inst. Chem. Eng. 47, T212 (1969).

    Google Scholar 

  7. Romanenkov, I. G., Soviet Plastics, No. 4, 43–45 (1967).

    Google Scholar 

  8. Halpin, J. C., Air Force System Comman, Wright-Patterson AFB, Ohio, June 1969 (AD 692481).

    Google Scholar 

  9. Alfrey Jr., Turner, E. F. Gurnee, and W. G. Lloyd, J. Poly. Sci., Part C, No. 12, 249–261 (1966).

    Google Scholar 

  10. Bott, T. R. and A. J. Barker, Trans. Instr. Chem. Engrs. 47, T188–193 (1969).

    Google Scholar 

  11. Krolikowski, W., SPE 1964, 1031-1035.

    Google Scholar 

  12. Raffel, B. P., 23rd Annual Technical Conf. 1966, R.P., SPI, Section 12-C.

    Google Scholar 

  13. James, D. I., R. H. Norman, and M. H. Stone, Plastics and Polymers 1968, 21-31.

    Google Scholar 

  14. Ruhnke, G. M. and L. F. Bivitz, Plastics and Polymers 1970, 265-270.

    Google Scholar 

  15. Schrader and E. Malcolm, J. Adhesion 2, 202 (1970).

    Article  Google Scholar 

  16. Wende, A. and J. Gähde, BPF 1966, 15.

    Google Scholar 

  17. Plueddemann, E. P., Modern Plastics 1970, 92.

    Google Scholar 

  18. Eakins, W. J., Interfaces in Composites 452, 137-148 (ASTM Special Technical Publications).

    Google Scholar 

  19. Ashbee, K. H. G. and R. C. Wyatt, Proc. Roy. Soc. A312, 553–564 (1964).

    ADS  Google Scholar 

  20. Wyatt, R. C. and K. H. G. Ashbee, Fibre Science and Technology, pp. 29-49 (1969).

    Google Scholar 

  21. Romanenkov, I. G., Soviet Plastics 1967, No. 2, 74-75.

    Google Scholar 

  22. Cameron, J. B., Trans. J. Plast. Inst. 1967, 681-687.

    Google Scholar 

  23. Brelant, S., I. Petker, and K. W. Smith, SPE 1964, 1019-1023.

    Google Scholar 

  24. Bax, J., Koninklijke/Shell Plastics Laboratorium, Delft, PB 68-86.

    Google Scholar 

  25. Atkinson, Harvey E., Modern Plastics 1969, 108-123.

    Google Scholar 

  26. Isham, A. B., 22nd SPI RP Conference, Section 16E.

    Google Scholar 

  27. Tsai, S. W., J. C. Halpin, and N. J. Pagano, Technomic Publ. Co., “Composite Materials Workshop”, pp. 375-378.

    Google Scholar 

  28. Shafrin, E. G. and W. A. Zisman, Amer. Ceram. Soc. J. 50, 478–484 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ishai, O., Mazor, A. (1975). The effect of environmental-loading history on longitudinal strength of glass-fiber reinforced plastics. In: Vallet, G., Meskat, W. (eds) Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-41458-3_131

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41458-3_131

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0424-0

  • Online ISBN: 978-3-662-41458-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics