Skip to main content

A reaction rate model for deformation and fracture in polymeric fibers

  • Chapter
  • 7 Accesses

Abstract

Fracture in polymers is a complex phenomenon of considerable recent interest. Here we shall discuss an important subclass, i.e. highly-oriented polymer fibers. Several models have been proposed to describe the micro-structure in fibrous polymers. These range from the early fringed micelle structures (1) to more recently proposed folded chain models (2, 3). Although models proposed by Hearle (4); Bosley (5); Keller (6); Fischer et al. (7); Peterlin (2); Dismore and Statton (8); Gubanov and Chevychelov (9); Takayangai et al. (10); and Bonart and Hosemann (3) differ in some very important details, they have a basic common element in their microstructure; that is, they view polymers as alternating between highly-ordered regions and less ordered or “tie molecule” regions. For the particular melt spun, hot-drawn Nylon 6 fibers used in this research, Joon B. Park (11) has recently proposed a paracrystalline, folded chain structure as representative of the fiber microstructure.

Portions of this work were sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hearle, J. W. S. and R. H. Peters, Fiber Structure (Manchester 1963).

    Google Scholar 

  2. Peterlin, A., Polymer Sci. A2, 7, 1151 (1969).

    Google Scholar 

  3. Bonart, R. and R. Hosemann, Z. Elektrochem. 64, 314 (1960).

    Google Scholar 

  4. Hearle, J. W. S., Polymer Sci. C20, 215 (1967).

    Google Scholar 

  5. Boseley, D. E., Polymer Sci. C20, 77 (1967).

    Google Scholar 

  6. Keller, A., Philosophical Magazine 2, 1171 (1957).

    Article  ADS  Google Scholar 

  7. Fischer, E. W., H. Goddar, and G. F. Schmidt, Makromolecular Chemistry 117, 170 (1968).

    Article  Google Scholar 

  8. Dismore, P. F. and W. O. Station, J. Polymer Sci. B2, 1113 (1964).

    Article  Google Scholar 

  9. Dismore, P. F. and W. O. Station, J. Polymer Sci. C13, 133 (1966).

    Google Scholar 

  10. Gubanov, A. I. and A. D. Chevychelov, Soviet Physics-Solid State 4, 4 (1962).

    Google Scholar 

  11. Takayanagi, M., K. Imada, and T. Kajiyama, Polymer Sci. C15, 263 (1966).

    Google Scholar 

  12. Park, J. B., Fracture Morphology of Nylon 6 Fibers. Unpublished Ph. D. Dissertation, Division of Materials Science and Engineering, Department of Mechanical Engineering, University of Utah (Salt Lake City, Utah, 1971).

    Google Scholar 

  13. Tobolsky, A. and H. Eyring, J. Chem. Physics 11, 125 (1943).

    Article  ADS  Google Scholar 

  14. Bueche, F., Physical Properties of Polymers (New York 1961).

    Google Scholar 

  15. Gubanov, A. I. and A. D. Chevychelov, Soviet Physics-Solid State 5, 62 (1963).

    Google Scholar 

  16. Rosen, B., ed., Fracture Processes in Polymer Solids (New York 1964).

    Google Scholar 

  17. Zhurkov, S. N., A. Y. Savostin, and E. E. Tomashevskii, Soviet Physics-Doklaky 9, 968 (1964).

    Google Scholar 

  18. Roylance, D. K, K. L. De Vries, and M. L. Williams, Fracture. Ed. P. Pratt (London 1969).

    Google Scholar 

  19. Kausch-Blecken von Schmelling, H. H. and J. Becht, Rheol. Acta 9, 137 (1970).

    Article  Google Scholar 

  20. Verma, G. S. P. and A. Peterlin, Polymer Preprints 10, 2, 1051 (1969).

    Google Scholar 

  21. Kausch-Blecken von Schmelling, H. H., Internat. J. Fracture Mechanics 6, 301 (1970).

    Google Scholar 

  22. Kausch-Blecken von Schmelling, H. H., J. Macromol. Sci. — Rev. Macromol. Chem. C4 (2), 243 (1970).

    Article  Google Scholar 

  23. De Vries, K. L., B. A. Lloyd, and M. L. Williams, J. Appl. Phys. 42, 4633 (1971).

    Google Scholar 

  24. Lloyd, B. A., K. L. De Vries, and M. L. Williams, J. Polymer Sci. A2, 10, 1415 (1972).

    Google Scholar 

  25. Becht, J. and H. Fischer, Kolloid-Z. 229, 167 (1969).

    Google Scholar 

  26. Roylance, D. K, An EPR Investigation of Polymer Fracture. An unpublished Ph. D. dissertation, Department of Mechanical Engineering, University of Utah (Salt Lake City, Utah, 1968).

    Google Scholar 

  27. Becht, J., K. L. De Vries, and H. H. Kausch-Blecken von Schmelling, European Polymer J. 7, 105 (1971).

    Article  Google Scholar 

  28. Backman, D. K, An EPR Investigation of Polymer Fracture Surfaces. An unpublished Ph. D. dissertation, Department of Mechanical Engineering (University of Utah 1969).

    Google Scholar 

  29. Backman, D. K and K. L. De Vries, J. Polymer Sci. A1, 7, 2125 (1969).

    Google Scholar 

  30. Chevychelov, A. D., Polymer Mechanics 3, 5 (1970).

    Article  Google Scholar 

  31. Lloyd, B.A., Fracture Behavior in Nylon 6 Fibers. Unpublished Ph. D. dissertation, Mechanical Engineering Department, University of Utah (Salt Lake City, Utah, 1972).

    Google Scholar 

  32. Holmes, D. R., C. W. Bunn, and D. J. Smith, J. Polymer Sci. 17, 159 (1955).

    Article  ADS  Google Scholar 

  33. Geil, P. H., Polymer Single Crystals (New York 1963).

    Google Scholar 

  34. Station, W. O., Polymer Sci. C18, 33 (1967).

    Google Scholar 

  35. Meinel, G. and A. Peterlin, J. Polymer Sci. A2, 6, 587 (1968).

    Google Scholar 

  36. Zhurkov, S. N., V. A. Zakrevskii, V. E. Korsukov, and V. S. Kuksenko, Soviet Physics-Solid State 13, 7, 1680 (1972).

    Google Scholar 

  37. Hess, K. and H. Kiessig, Z. Physik Chem. (Leipzig) 193, 196 (1944).

    Google Scholar 

  38. Station, W. O., Polymer Sci. 41, 143 (1959).

    Article  ADS  Google Scholar 

  39. Zhurkov, S. N. and E. E. Tomoshevskii, Proceedings of the Conference on the Physical Basis of Yield and Fracture (Oxford/England, Oxford Univ. Press. 1966).

    Google Scholar 

  40. Campbell, D. and A. Peterlin, Polymer Letters 6, 481 (1968).

    Article  Google Scholar 

  41. Treloar, L. R. G., Polymer 1. 5, 95 (1960).

    Article  Google Scholar 

  42. Roberts, J.D. and M. C. Caserio, Basic Principles of Organic Chemistry (New York and Amsterdam 1965).

    Google Scholar 

  43. Gerö, L., Journal of Chemical Physics 16, 1011 (1948).

    Article  ADS  Google Scholar 

  44. Zakrevskii, V. A., E. E. Tomashevskii, and V. V. Baptizmanskii, Soviet Physics-Solid State 9, 1118 (1967).

    Google Scholar 

  45. Zhurkov, S. N., International Journal of Fracture Mechanics 1, 311 (1965).

    Google Scholar 

  46. Perepelkin, K. E., Polymer Mechanics 2, 536 (1969).

    Article  Google Scholar 

  47. Peterlin, A., Personal communication.

    Google Scholar 

  48. Pechhold, W., J. Polymer Sci. C32, 123 (1971).

    Google Scholar 

  49. Park, J. B., W. O. Statton, and K. L. De Vries, UTEC ME 71-122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lloyd, B.A., DeVries, K.L., Williams, M.L. (1975). A reaction rate model for deformation and fracture in polymeric fibers. In: Vallet, G., Meskat, W. (eds) Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-41458-3_128

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41458-3_128

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0424-0

  • Online ISBN: 978-3-662-41458-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics