Skip to main content

A moving punch on an infinite viscoelastic layer

  • Chapter
  • 7 Accesses

Abstract

When a smooth rigid punch of arbitrary shape is pressed onto an elastic body, an area of contact D is formed within which the contact pressure p is non-negative. Outside of the contact area D, p = 0. The problem is to find the contact pressure p and the shape of the contact region D for a given depth of indentation, or a given total force applied to the punch. In general, the governing equation can be reduced to the following integral equation:

$$w\left( {{x_1},{x_2}} \right) = \iint\limits_D {\left( {{x_1},{x_2},{\xi _1},{\xi _2}} \right)p\left( {{\xi _1},{\xi _2}} \right)d{\xi _1}d{\xi _2}}$$
((1a))

in which K(x 1, x 2, ξ1 ξ1) is known and w is given by

$$w\left( {{x_1},{x_2}} \right) = \alpha - f\left( {{x_1},x{}_2} \right)$$
((1b))

where a is the depth of indentation and f(x 1, x 2) is the function which describes the shape of the punch. Unless K and f are simple in form, the solutions of eq. [1] for p and D in general require a numerical approximation. Since the physical observation demands that p > 0 inside D and p = 0 outside D, the method of linear programming is probably the most effective one in solving this problem numerically. The purpose of this paper is to show that not only the contact problem of a rigid punch on an elastic body yields eq. [1], many contact problems of a rigid punch on a viscoelastic body and the contact problems of a moving punch on a viscoelastic body also reduce to eq. [1]. It should be noticed that depending on the shape of the punch, D may not be a simply-connected region. It should also be mentioned that for a viscoelastic body, D is in general not a constant but varies with time even in the case of a punch which is held stationary on the surface of a viscoelastic body.

The work presented here was supported by the National Science Foundation under Grant GK 35163 with the University of Illinois.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sokolnikoff, I. S., Mathematical Theory of Elasticity (New York 1956).

    Google Scholar 

  2. Sneddon, I. N., Fourier Transforms (New York 1951).

    Google Scholar 

  3. Ting, T. C. T., J. Appl. Mech. 35, 248–254 (1968).

    Article  ADS  MATH  Google Scholar 

  4. Ting, T. C. T., J. Appl. Mech. 33, 845–854 (1966).

    Article  ADS  MATH  Google Scholar 

  5. Lee, E. H., Viscoelastic Stress Analysis, Structural Mechanics, Proceedings of the First Symposium on Naval Structural Mechanics (New York 1960).

    Google Scholar 

  6. Lee, E. H. and J. R. M. Radok, J. Appl. Mech. 27, 438–444(1960).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Hunter, S. C., J. Mech. Physics Solids 8, 219–234 (1960).

    Article  ADS  MATH  Google Scholar 

  8. Graham, G. A. C., Int. J. Eng. Sci., 3, 27–45 (1965).

    Article  MATH  Google Scholar 

  9. Graham, G. A. C., Int. J. Eng. Sci. 5, 495–514 (1967).

    Article  MATH  Google Scholar 

  10. Ting, T. C. T. and C. H. Wu, J. Appl. Mech. 39, 461–468 (1972).

    Article  MATH  Google Scholar 

  11. Efimov, A.B., Vestnik Moskovskogo Universiteta, Seriya 1, Matematika-Mekhanika, No. 2, 120–127 (1966).

    MathSciNet  Google Scholar 

  12. Tsai, Y. M., Q. Appl. Math. 27, 371–380 (1969).

    MATH  Google Scholar 

  13. Hunier, S. C., J. Appl. Mech. 28, 611–617 (1961).

    Article  ADS  Google Scholar 

  14. Morland, L. W., J. Appl. Mech. 29, 345–352 (1962).

    Article  ADS  MATH  Google Scholar 

  15. Yang, W. H., J. Appl. Mech. 33, 395–401 (1966).

    Article  ADS  Google Scholar 

  16. Christensen, R. M., Theory of Viscoelasticity (New York 1971).

    Google Scholar 

  17. Gurtin, M. E. and E. Sternberg, Arch. Rat. Mech. Analysis 11, 291–356 (1962).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ting, T.C.T. (1975). A moving punch on an infinite viscoelastic layer. In: Vallet, G., Meskat, W. (eds) Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-41458-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41458-3_12

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-0424-0

  • Online ISBN: 978-3-662-41458-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics