Skip to main content

Low Temperature Heat Capacity of Solids

  • Chapter
Low Temperature Physics I / Kältephysik I

Part of the book series: Encyclopedia of Physics / Handbuch der Physik ((HDBPHYS,volume 3 / 14))

Abstract

Since the publication of Eucken’s „Energie und Wärmeinhalt“ [1] in 1929 our knowledge of the heat capacity of solids has increased tremendously, especially in the very low temperature region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. Eucken, A.: Energie und Wärmeinhalt, Bd. 8, Teil 1 im Handbuch der Experimentalphysik, Herausg. W. Wien u. F. Harms. Leipzig: Akademische Verlagsgesellschaft 1929.

    Google Scholar 

  2. Eucken, A.: An encyclopedic work on all aspects of heat capacity problems, including experimental techniques, results of experiment and theory, together with an extensive bibliography.

    Google Scholar 

  3. Einstein, A.: Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann. Phys. 22, 180–190 (1907).

    MATH  Google Scholar 

  4. Einstein, A.: Berichtigung zu: die Plancksche Theorie usw. Ann. Phys. 22, 800 (1907).

    Article  Google Scholar 

  5. Einstein, A.: Eine Beziehung zwischen dem elastischen Verhalten und der spezifischen Wärme bei festen Körpern mit einatomigen Molekül. Ann. Phys. 34, 170–174 (1911).

    Article  MATH  Google Scholar 

  6. Einstein, A.: The first of these papers is historically important as marking two great theoretical advances: the application of Planck’s quantum theory outside its original domain; and the explanation of the failure of the equipartition law as evidenced by atomic heat values for certain elements which are lower than that predicted by the law of Dulong and Petit.

    Google Scholar 

  7. Debye, P.: Zur Theorie der spezifischen Wärme. Ann. Physik 39, 789–839 (1912). — This paper contains Debye’s derivation of his T3 law for heat capacity at low temperatures. Besides being of historical interest, his conclusions remain valid, in a restricted temperature range, even in more detailed theories.

    Article  ADS  MATH  Google Scholar 

  8. Born, M., u. T. v. Kármán: Über Schwingungen in Raumgittern. Phys. Z. 13, 297–309 (1912).

    MATH  Google Scholar 

  9. Born, M., u. T. v. Kármán: Zur Theorie der spezifischen Wärme. Phys. Z. 14, 15–21 (1913).

    MATH  Google Scholar 

  10. Born, M., u. T. v. Kármán: Über die Theorie der Verteilung der Eigenschwingungen von Punktgittern. Phys. Z. 14, 65–71 (1913).

    Google Scholar 

  11. The first and third of these papers laid the foundation of the lattice theory which has since been developed by many workers, especially Blackman (see reference [5]). In the second the T3 law is shown to follow from the lattice theory at very low temperatures.

    Google Scholar 

  12. Blackman, M.: The Theory of the Specific Heat of Solids. Repts. Progr. Phys. 8, 11–30 (1941). — A review of the experimental values of atomic heat at low temperatures, as compared with calculations based on Debye’s theory using elastic constants, and with the lattice theory as developed by Blackman and others. The apparent agreement with the Debye theory is shown in many cases to be largely fortuitous. References are included to Blackman’s original calculations of vibration spectra and to other calculations published up to 1940.

    Article  ADS  Google Scholar 

  13. Born, M., and K. Huang: Dynamical Theory of Crystal Lattices. London: Oxford University Press 1954. — Discussion of the application of lattice theory to a variety of problems. Sect. 4 through 6 treat thermodynamical applications, including heat capacity. A review of the methods which have been devised to evaluate vibration spectra is included, with references.

    MATH  Google Scholar 

  14. Sommerfeld, A.: Zur Elektronentheorie der Metalle. Naturwiss. 15, 825–832 (1927). — Zur Elektronentheorie der Metalle auf Grund der FERMischen Statistik I. Allgemeines, Strömungs- und Austrittsvorgänge. Z. Physik 47, 1 – 32 (1928). — The first of these papers is a shorter summary of the results presented in detail in the second. Sommerfeld’s formulas for the electronic heat capacity appears for the first time in the latter, although a qualitative discussion on the basis of the temperature variation of a degenerate electron gas is given in the former.

    Article  ADS  MATH  Google Scholar 

  15. Sommerfeld, A., u. H. Bethe: Elektronentheorie der Metalle. Handbuch der Physik, Bd. 24, Teil 2, S. 333–622. Berlin: Springer 1933. — Classical account of the electron theory of metals, including Sommerfeld’s free electron treatment and the applications of band theory as well.

    Google Scholar 

  16. Seitz, F.: The Modern Theory of Solids. New York and London: The McGraw-Hill Book Company, Inc. 1940. — A valuable text on many aspects of solid state theory. Chapter III is devoted to specific heat of simple solids, including a discussion of vibration spectra; Chapter IV sect. 27 treats the electronic heat capacity in non-transition metals and sect. 28, that in transition metals. The theory of the band approximation and approximation methods involved in band calculations are discussed in Chapters VIII and IX respectively and typical band structures in metals and other solids are described in Chapter XIII.

    MATH  Google Scholar 

  17. Eisenstein, J.: Superconducting elements. Revs. Mod. Phys. 26, 277–291 (1954). — A review of magnetic and calorimetric data on superconducting elements, with the data for each element discussed in some detail. A summarizing table includes the crystal structure, normal transition temperature, critical field at absolute zero and magnetic and calorimetric values of y.

    Article  ADS  Google Scholar 

  18. Raynor, G. V.: The band structure of metals. Repts. Progr. Phys. 15, 173–248 (1952). — A comprehensive survey of theoretical calculations and experimental evidence on metallic band structures. Other types of data receive more attention than the electronic heat capacity.

    Article  ADS  Google Scholar 

  19. Daunt, J. G.: The electronic specific heat of metals. In Progress in Low Temperature Physics, ed. C. J. Gorter, vol. 1, pp. 202–223. Amsterdam and New York: North-Holland Publishing Company and Interscience Publishers, Inc. 1955. — A detailed discussion of the relation of the band structure to the electronic heat capacity, including magnetic evidence from superconductive elements. Extensive references are appended.

    Google Scholar 

  20. Mott, N. F.: Recent advances in the electron theory of metals. In Progress in Metal Physics, vol. 3, pp. 76–114. London and New York: Pergamon Press Ltd. and Interscience Publishers, Inc. 1952. — A comprehensive survey of many aspects of the theory, including heat capacity.

    Google Scholar 

  21. Shiffman, C. A.: The Heat Capacities of the Elements below Room Temperature. Schenectady: General Electric Research Laboratory 1952.

    Google Scholar 

  22. Shull, D. R., and G. C. Sinke: The Thermodynamic Properties of the Elements in their Standard States. Midland, Michigan: The Dow Chemical Company 1955. — This and the previous reference tabulate values of the thermodynamic properties and include extensive lists of references. Those in reference [14] are especially conveniently arranged.

    Google Scholar 

  23. Serin, B.: The Magnetic threshold curve of superconductors. In Progress in Low Temperature Physics, ed. C. J. Gorter, vol. 1, pp. 138–150. Amsterdam and New York: North-Holland Publishing Company and Interscience Publishers, Inc. 1955. — The relation between the threshold curve and thermodynamic properties is discussed, with data on tin treated in detail.

    Google Scholar 

  24. Shoenberg, D.: Superconductivity. Cambridge: Cambridge University Press 1952. — In this text both experimental and theoretical aspects are discussed. Tables and graphs of data are included, with a detailed bibliography of recent work.

    MATH  Google Scholar 

  25. Nix, F. C., and W. Shockley: Order-disorder transformations in alloys. Rev. Mod. Phys. 10, 1–17 (1938).

    Article  ADS  Google Scholar 

  26. Nakamura, T.: Statistical Mechanics of cooperative phenomena. Progr. Theor. Phys. 7, 241–254 (1952).

    Article  ADS  MATH  Google Scholar 

  27. Kikuchi, R.: A theory of cooperative phenomena. Phys. Rev. 81, 988–1003 (1951).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Ter Haar, D.: Elements of Statistical Mechanics. New York: Rinehart & Company, Inc. 1954. Chapt. XIII, pp. 251–295. Cooperative phenomena.

    MATH  Google Scholar 

  29. Smoluchowski, R., editor: Phase Transformations in Solids. New York and London: John Wiley & Sons, Inc. and Chapman & Hall, Ltd. 1951. — Ter Haar gives a good account of the basic theory together with some applications. Nakamura and Kikuchi present detailed discussions of particular forms of the theory. The problem of order-disorder, both theoretical and experimental, is considered by Nix and Shockley. The last entry is a symposium in which a variety of cooperative phenomena are treated.

    Google Scholar 

Download references

Authors

Editor information

S. Flügge

Rights and permissions

Reprints and permissions

Copyright information

© 1956 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keesom, P.H., Pearlman, N. (1956). Low Temperature Heat Capacity of Solids. In: Flügge, S. (eds) Low Temperature Physics I / Kältephysik I. Encyclopedia of Physics / Handbuch der Physik, vol 3 / 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-39773-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-39773-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-38851-8

  • Online ISBN: 978-3-662-39773-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics