Skip to main content

Abstract

The paper presents an analysis of orbital systems, consisting of the orbital establishment, its supply vehicles and their technique of operation. Satellite orbits are classified as permanent (stationary for more than 10 years) and as temporary. The lower altitude limit for permanent satellite orbits appears to be 450 to 500 miles. These orbits are occupied by observational satellites. An altitude range between 500 and 700 miles is found to be relatively most desirable for observational satellites. Three types of temporary orbits are defined, namely auxiliary orbits (120 to 150 miles altitude; duration of occupation a few hours at the most; purpose is payload transfer), orbits of departure of astronautical expeditions, particularly into the translunar space (350 to 400 miles altitude; duration of occupation about one year or less; purpose is assembly of inter-orbital vehicles), and orbits of arrival of astronautical expeditions (30,000 to 40,000 miles altitude for Venus or Mars expeditions; duration of occupation for a few days by returning expedition until being picked up by orbital vehicle from the earth). It is shown that the optimum satellite orbit of departure is as close to the earth as feasible and that the optimum orbit of return as well as the optimum satellite orbit at the target planet vary with the target planet. Therefore, with the exception of the orbit of arrival, all satellite orbits preferably lie below 700 miles altitude, that is, within the physical atmosphere of the earth.

Orbital supply systems are discussed, distinguishing between passenger-carrying and load-carrying orbital vehicles. The latter type is fully automatic. A large supply vehicle will be needed for periods of establishing orbital installations. For their maintenance a small version is anticipated. Desirable features and configurations for observational satellites and for orbital vehicles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

C L :

lift coefficient

F :

thrust

F c :

apparent centrifugal force

i :

orbital inclination with respect to the ecliptic

P :

precession constant

R :

distance from the sun

r :

distance from the earth

Y s,opt :

distance of optimum satellite orbit of departure with respect to a given interplanetary transfer ellipse

S :

lifting area

T pr :

period of regression of the orbital nodes due to polar-precession

T pr ′ :

period of regression with respect to the half of the globe being exposed to the sun

t r *:

sidereal period of revolution in an orbit

v :

velocity

W :

vehicle weight

y :

altitude

α :

angle of attack

γ :

or γ parameter of the terrestrial gravity field (6.254 · 104 n · mi3/sec2 = 3.98 · 105 km3/sec2)

γ :

parameter of the solar gravity field (2.067 · 1010 n mi3/sec2 = = 1.36 · 1011km3/sec3)

δ :

orbital inclination with respect to the equator

δ :

displacement thickness of the boundary layer

θ :

trajectory angle

λ :

mean free molecular path

ϱ :

air density

σ :

ϱ y /ϱ 00

φ̄ :

angular velocity of satellite in orbit

φ p :

rate of regression

ω :

angular velocity Subscripts

A :

apogee or aphelion

c :

circular

P :

perigee or perihelion

s :

satellite

y :

referring to altitude y

00:

surface value

References

  1. Krafft A. Ehricke, The Foundations of Interplanetary Flight, Part 1 (in German). Research Series of the Nordwest-Deutsche Gesellschaft für Weltraumforschung e. V., No. 1 (1950).

    Google Scholar 

  2. A. V. Cleaver, A Programme for Achieving Interplanetary Flight. J. Brit. Interplan. Soc. 13, 1 (1954).

    Google Scholar 

  3. Krafft A. Ehricke, A Method of Using Small Orbital Carriers for the Establishment of Large Satellites. Amer. Rocket Soc, Paper 69/52.

    Google Scholar 

  4. Krafft A. Ehricke, A New Supply System for Satellite Orbits. Part 1. Jet Propulsion 24, 302 (1954); Part 2. Jet Propulsion 24, 369 (1954).

    Article  Google Scholar 

  5. Krafft A. Ehricke, A Comparison of Propellants and Working Fluids for Rocket Propulsion. J. Amer. Rocket Soc. 23, 287 (1953).

    Article  Google Scholar 

  6. Irene Sänger-Bredt, On the Thermodynamics of Working Fluids for Atomic Rockets (in German). Z. Naturforsch. 8 a, 796 (1953).

    ADS  Google Scholar 

  7. K. R. Stehling, Earth Scanning Techniques for a Small Orbital Rocket Vehicle. Amer. Rocket Soc, Paper 97/53.

    Google Scholar 

  8. L. Spitzer, Jr., Perturbations of a Satellite Orbit. J. Brit. Interplan. Soc. 9, 131 (1950).

    Google Scholar 

  9. D. Brouwer, The Motion of a Particle with Negligible Mass under the Gravitational Attraction of a Spheroid. Astronom. J. 51, 223 (1946).

    Article  ADS  MathSciNet  Google Scholar 

  10. Krafft A. Ehricke, The Establishment of Large Satellites by Means of Small Orbital Carriers. Paper presented at the Third International Astronautical Congress at Stuttgart, Germany, Sept. 1952, Probleme aus der Astronautischen Grundlagenforschung. Stuttgart: Gesellschaft für Weltraumforschung, 1952.

    Google Scholar 

  11. K. W. Gatland, A. M. Kunesch, and A. E. Dixon, Fabrication of the Orbital Vehicle. J. Brit. Interplan. Soc. 12, 274 (1953).

    Google Scholar 

  12. W. von Braun, The Mars Project. Urbana, Illinois: The University of Illinois Press, 1953.

    Google Scholar 

  13. H. Noordung, The Problem of Space Flight (in German), First Ed. Berlin: R. C. Schmidt & Co., 1929.

    Google Scholar 

  14. H. S. Tsien, Superaerodynamics, Mechanics of Rarified Gases. J. Aeronaut. Sci. 13, 653 (1946).

    Article  Google Scholar 

  15. G. Grimminger, Analysis of Temperature, Pressure and Density of the Atmosphere Extending to Extreme Altitudes. Santa Monica, Calif.: The RAND Corporation, Nov. 1948.

    Google Scholar 

  16. E. Sänger, The Gaskinetics of Very High Flight Speed. N.A.C.A. Techn. Mem. 1270, May 1950.

    Google Scholar 

  17. J. R. Stalder and V. J. Zuriçk, Theoretical Aerodynamic Characteristics of Bodies in a Free Molecule Flow Field. N.A.C.A. Techn. Note 2423, July 1951.

    Google Scholar 

  18. J. R. Stalder, G. Goodwin, and M. O. Creager, A Comparison of Theory and Experiment for High Speed Free Molecule Flow. N.A.C.A. Techn. Note 2244, Dec. 1950.

    Google Scholar 

  19. R. M. Drake Jr., and G. J. Maslach, Heat Transfer from Right Circular Cones to a Rarified Gas in Supersonic Flow. University of California, Berkeley, Report HE—150—91, 1952.

    Google Scholar 

  20. J. R. Stalder and D. Jukoff, Heat Transfer to Bodies Traveling at High Speed in the Upper Atmosphere. N.A.C.A. Techn. Note 1682, August 1948

    Google Scholar 

  21. J. R. Stalder, G. Goodwin, and M. O. Creager, Heat Transfer to Bodies in High Speed Rarified Gas Stream. N.A.C.A. Techn. Note 2438, August 1951.

    Google Scholar 

  22. F. M. Sauer, Convective Heat Transfer from Spheres in a Free Molecule Flow. J. Aeronaut. Sci. 18, 353 (1951).

    Article  MATH  Google Scholar 

  23. A. K. Oppenheim, Generalized Theory of Convective Heat Transfer in Free-Molecule Flow. J. Aeronaut. Sci. 20, 49 (1953).

    Article  MathSciNet  Google Scholar 

  24. L. Lees, On the Boundary Layer Equations in Hypersonic Flow and their Approximate Solutions. J. Aeronaut. Sci. 20, No 2 (1953).

    Google Scholar 

  25. E. Sänger and Irene Bredt, A Rocket Drive for Long Range Bombers. Dtsch. Luftfahrt-Forschung UM 3538, August 1944, Transl. by M. Hamermesh, Radio Research Laboratory, Reproduced by R. Cornog, 990 Cheltenham Road, Santa Barbara, California.

    Google Scholar 

  26. G. B. W. Young and E. Janssen, The Compressible Boundary Layer. J. Aeronaut. Sci. 19, 229 (1952).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1955 Springer-Verlag Wien

About this chapter

Cite this chapter

Ehricke, K.A. (1955). Analysis of Orbital Systems. In: Hecht, F. (eds) Bericht über den V. Internationalen Astronautischen Kongreß. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-38334-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-38334-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-37558-7

  • Online ISBN: 978-3-662-38334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics