Skip to main content

The projection X-ray microscope and related microanalytical techniques

  • Chapter
Verhandlungen
  • 2 Accesses

Abstract

Three methods of microscopical investigation with X-rays are in process of active development: the total reflection, the contact microradiographic and the direct projection methods. The total reflection method, in which true focussing of X-rays takes place at polished cylindrical mirrors, has been investigated very thoroughly by Kirkpatrick and Baez (1) and a detailed account of its present state has been given by Kirkpatrick and Pattee (2). It has attained a resolving power of about 0.25 μ, but further progress is hindered by technical difficulties of preparing the specially curved surfaces required to reduce the severe aberrations that occur in conditions of glancing incidence. The contact method is the simplest, since the specimen is photographed at one-to-one magnification on a very fine grained emulsion, without the need for any optical element in either the electron or the X-ray path. It has been developed to a high degree of usefulness in biological research by Engström (3, 4) in particular, who has also investigated its value as a method of microanalysis by differential absorption of X-rays [see also Lindström (5), Clemmons (6)]. As the micro-negative must be enlarged through an optical system, in order to make available the stored information, the resolving power is limited to that of the best optical microscope and this limit (about 0.2 μ) has now been reached. Efforts have been made (7, 8) to circumvent this difficulty by using electron microscopy to enlarge the photographic image, but the difficulties are formidable. The projection method of X-ray microscopy, on the other hand, has no such limitation because it provides a direct initial magnification of the image, which is recorded on a normal type of emulsion and requires little or no subsequent enlargement. A resolving power of about 0.1 μ has already been obtained (9) and further improvement is possible. The projection method is closely related to electron microscopy, since electron lenses are employed to obtain the very small focal spot by which the image is projected. The resolution and exposure time depend on the size and intensity of the spot, and therefore on the aberrations of the electron lenses. For this reason it is appropriate to discuss the physical aspects of projection X-ray microscopy in the present meeting. Attention will be directed mainly to advances made since the 1956 Symposium on X-ray microscopy (10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirkpatrick, P., and A. V. Baez: J. opt. Soc. Amer. 38, 766 (1948).

    Article  ADS  Google Scholar 

  2. Kirkpatrick, P., and H. H. Pattee jr.: Handbuch der Physik 30, 305 (1957).

    ADS  Google Scholar 

  3. Engström, A.: Acta radiol. (Stockh.) Suppl. 63, 1 (1946).

    Google Scholar 

  4. EngströmA.: Phys. Techn. Biol. Res. 3, 489. New York: Acad. Press 1956.

    Google Scholar 

  5. Lindström, B.: Acta radiol. (Stockh.) Suppl. 125, 1, (1955).

    Google Scholar 

  6. Clemmons, J. G.: Exp. Cell. Res. Suppl. 4, 172 (1957).

    Google Scholar 

  7. Recourt, A.: Proc. Symp. X-ray Microscopy and Microradiography, Cambridge 1956. Cambridge: University Press 1957, 234.

    Google Scholar 

  8. Ladd, W. A., and M. W. Ladd: Proc. Symp. X-ray Microscopy and Microradiography, Cambridge 1956. Cambridge: University Press 1957, 383.

    Google Scholar 

  9. Nixon, W. C.: Proc. roy. Soc. Lond. A 232, 475 (1955).

    Article  ADS  Google Scholar 

  10. Proceedings of the Symposium on X-ray Microscopy and Microradiography, Cambridge 1956. Cambridge: University Press 1957.

    Google Scholar 

  11. Bessen, I. I.: Norelco Rep. 4, 119 (1957).

    Google Scholar 

  12. Cosslett, V. E., and P. Duncumb: Nature (Lond.) 177, 1172 (1956);

    Article  ADS  Google Scholar 

  13. Cosslett, V. E., and P. Duncumb: Stockholm Conf. Elect. Microscopy, 1956. Stockholm: Almqvist and Wiksell 1957, 12.

    Google Scholar 

  14. Duncumb, P.: Thesis, Cambridge (1957).

    Google Scholar 

  15. Duncumb, P.: This volume, p. 267

    Google Scholar 

  16. Cosslett, V. E., and W. C. Nixon: Nature (Lund.) 168, 24 (1951).

    Article  ADS  Google Scholar 

  17. Cosslett, V. E., and W. C. Nixon: J. appl. Physics 24, 616 (1953).

    Article  ADS  Google Scholar 

  18. Cosslett, V. E., and W. C. Nixon: Proc. Phys. Soc. B 65, 782 (1952).

    Article  ADS  Google Scholar 

  19. Langner, G.: Proc. Symp. X-ray Microscopy and Microradiography, Cambridge 1956. Cambridge: University Press 1957, 293.

    Google Scholar 

  20. Ong Sing Poen, and J. B. Le Poole: Appl. Sci. Res. B7, 233 (1958).

    Article  Google Scholar 

  21. Nixon, W. C.: This volume, p. 249

    Google Scholar 

  22. Teves, M. C., and T. Tor,: Philips Tech. Rev. 14, 33 (1952).

    Google Scholar 

  23. Kazan, B., and F. H. Nicoll: J. opt. Soc. Amer. 47, 887 (1957).

    Article  ADS  Google Scholar 

  24. Haine, M. E., A. E. Ennos, and P. A. Einstein: J. Sci. Inst. 35, 466 (1958).

    Article  ADS  Google Scholar 

  25. Nixon, W. C., and H. H. Patteejr.: Proc. Symp. X-ray Microscopy and Microradiography, Cambridge 1956. Cambridge: University Press 1957, 397.

    Google Scholar 

  26. Pattee, H. H. jr.: Science 128, 977 (1958).

    Article  ADS  Google Scholar 

  27. Feldman, C., and M. O’hara: J. opt. Soc. Amer. 47, 300 (1957).

    Article  ADS  Google Scholar 

  28. Long, J. V. P., and V. E. Cosslett: Proc. Symp. X-ray Microscopy and Microradiography, Cambridge 1956. Cambridge: University Press 1957, 435.

    Google Scholar 

  29. Long, J. V. P., and V. E. Cosslett: J. Sci. Inst. 35, 323 (1958).

    Article  ADS  Google Scholar 

  30. Röckert, H.: Acta odont. stand. Suppl. 25, (1958).

    Google Scholar 

  31. Long, J. V. P., and J. D. C. Mcconnell: Mineralogical Magazine 32, 117 (1959).

    Article  Google Scholar 

  32. Castaing, R.: Thesis, Paris (1951).

    Google Scholar 

  33. Borovsxii, I. B.: Problemy Metallurgi (A. N. SSSR: Moscow), 1953, 135; Zavodskaya Lab. 10, 1234 (1957).

    Google Scholar 

  34. Mulvey, T.: This volume, p. 263

    Google Scholar 

  35. Duxcumb, P., and D. A. Melford: Metallurgia 57, 159 (1958).

    Google Scholar 

  36. Borries, B. Von: Z. wiss. Mikrosk. 60, 329 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Bargmann G. Möllenstedt H. Niehrs D. Peters E. Ruska C. Wolpers

Rights and permissions

Reprints and permissions

Copyright information

© 1960 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cosslett, V.E. (1960). The projection X-ray microscope and related microanalytical techniques. In: Bargmann, W., Möllenstedt, G., Niehrs, H., Peters, D., Ruska, E., Wolpers, C. (eds) Verhandlungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01991-7_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01991-7_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01696-1

  • Online ISBN: 978-3-662-01991-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics