Skip to main content

Modularization of Deep Networks Allows Cross-Modality Reuse

Lesson Learnt

  • Conference paper
  • First Online:
Book cover Bildverarbeitung für die Medizin 2020

Part of the book series: Informatik aktuell ((INFORMAT))

Zusammenfassung

Fundus photography and Optical Coherence Tomography Angiography (OCT-A) are two commonly used modalities in ophthalmic imaging. With the development of deep learning algorithms, fundus image processing, especially retinal vessel segmentation, has been extensively studied. Built upon the known operator theory, interpretable deep network pipelines with well-defined modules have been constructed on fundus images. In this work, we firstly train a modularized network pipeline for the task of retinal vessel segmentation on the fundus database DRIVE. The pretrained preprocessing module from the pipeline is then directly transferred onto OCT-A data for image quality enhancement without further fine-tuning. Output images show that the preprocessing net can balance the contrast, suppress noise and thereby produce vessel trees with improved connectivity in both image modalities. The visual impression is confirmed by an observer study with five OCT-A experts. Statistics of the grades by the experts indicate that the transferred module improves both the image quality and the diagnostic quality. Our work provides an example that modules within network pipelines that are built upon the known operator theory facilitate cross-modality reuse without additional training or transfer learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Srinidhi CL, Aparna P, Rajan J. Recent advancements in retinal vessel segmentation. J med Syst. 2017;41(4):70.

    Google Scholar 

  2. Husvogt L, Ploner S, Maier A. Optical coherence tomography. Springer, Cham; 2018. p. 251–261.

    Google Scholar 

  3. Choi W, Moult EM, Waheed NK, et al. Ultrahigh-Speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy. Ophthalmology. 2015;.

    Google Scholar 

  4. Maier AK, Syben C, Stimpel B, et al. Learning with known operators reduces maximum error bounds. Nature machine intelligence. 2019;1(8):373–380.

    Google Scholar 

  5. Fu W, Breininger K, Schaffert R, et al. A divide-and-conquer approach towards understanding deep networks. In: MICCAI. Springer; 2019. p. 183–191.

    Google Scholar 

  6. Lin TY, Goyal P, Girshick R, et al. Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision; 2017. p. 2980–2988.

    Google Scholar 

  7. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980. 2014;.

  8. Zuiderveld K. Contrast limited adaptive histogram equalization. In: Graphics gems IV. Academic Press Professional, Inc.; 1994. p. 474–485.

    Google Scholar 

  9. Husvogt L, Ploner S, Moult EM, et al. Using medical image reconstruction methods for denoising of OCTA data. Invest Ophthal Vis Sci. 2019;60:3096.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, W., Husvogt, L., Ploner, S., Fujimoto, J.G., Maier, A. (2020). Modularization of Deep Networks Allows Cross-Modality Reuse. In: Tolxdorff, T., Deserno, T., Handels, H., Maier, A., Maier-Hein, K., Palm, C. (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-29267-6_61

Download citation

Publish with us

Policies and ethics