Skip to main content

Deep OCT Angiography Image Generation for Motion Artifact Suppression

  • Conference paper
  • First Online:

Part of the book series: Informatik aktuell ((INFORMAT))

Zusammenfassung

Eye movements, blinking and other motion during the acquisition of optical coherence tomography (OCT) can lead to artifacts, when processed to OCT angiography (OCTA) images. Affected scans emerge as high intensity (white) or missing (black) regions, resulting in lost information. The aim of this research is to fill these gaps using a deep generative model for OCT to OCTA image translation relying on a single intact OCT scan. Therefore, a U-Net is trained to extract the angiographic information from OCT patches. At inference, a detection algorithm finds outlier OCTA scans based on their surroundings, which are then replaced by the trained network. We show that generative models can augment the missing scans. The augmented volumes could then be used for 3-D segmentation or increase the diagnostic value.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. de Carlo T, Romano A, Waheed N, et al. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous. 2015;1(5).

    Google Scholar 

  2. Zhang A, Zhang Q, Chen C, et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20(10):100901.

    Google Scholar 

  3. Spaide R, Fujimoto J, Waheed N. Image artifacts in optical coherence angiography. Retina. 2015;35(11):2163–80.

    Google Scholar 

  4. Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710–25.

    Google Scholar 

  5. Liu X, Huang Z, Wang Z, et al. A deep learning based pipeline for optical coherence tomography angiography. J Biophotonics. 2019;12(10):e201900008.

    Google Scholar 

  6. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. MICCAI. 2015;9351:234–241.

    Google Scholar 

  7. Mayer M, Sheets K. OCT segmentation and evaluation GUI. PRL FAU Erlangen. 2012;Available from: https://www5.cs.fau.de/de/forschung/software/octseg/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Hossbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hossbach, J., Husvogt, L., Kraus, M.F., Fujimoto, J.G., Maier, A.K. (2020). Deep OCT Angiography Image Generation for Motion Artifact Suppression. In: Tolxdorff, T., Deserno, T., Handels, H., Maier, A., Maier-Hein, K., Palm, C. (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-29267-6_55

Download citation

Publish with us

Policies and ethics