Skip to main content

Prediction of Liver Function Based on DCE-CT

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2019

Part of the book series: Informatik aktuell ((INFORMAT))

  • 2036 Accesses

Zusammenfassung

Liver function analysis is crucial for staging and treating chronic liver diseases (CLD). Despite CLD being one of the most prevalent diseases of our time, research regarding liver in the Medical Image Computing community is often focused on diagnosing and treating CLD’s long term effects such as the occurance of malignancies, e.g. hepatocellular carcinoma. The Child-Pugh (CP) score is a surrogate for liver function used to quantify liver cirrhosis, a common CLD, and consists of 3 disease progression stages A, B and C. While a correlation between CP and liver specific contrast agent uptake for dynamic conrast enhanced (DCE)-MRI has been found, no such correlation has been shown for DCE-CT scans, which are more commonly used in clinical practice. Using a transfer learning approach, we train a CNN for prediction of CP based on DCE-CT images of the liver alone. Agreement between the achieved CNN based scoring and ground truth CP scores is statistically significant, and a rank correlation of 0.43, similar to what is reported for DCE-MRI, was found. Subsequently, a statistically significant CP classifier with an overall accuracy of 0.57 was formed by employing clinically used cutoff values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Suk KT, Kim MY, Baik SK. Alcoholic liver disease: treatment. World J Gastroenterol. 2014;20(36):12934–12944.

    Article  Google Scholar 

  2. Kortgen A, Recknagel P, Bauer M. How to assess liver function? Curr Opin Crit Care. 2010;16(2):136–141.

    Article  Google Scholar 

  3. Pugh R,Murray-Lyon I, Dawson J, et al. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60(8):646–649.

    Article  Google Scholar 

  4. Rowe IA. Lessons from epidemiology: the burden of liver disease. Dig Dis. 2017;35(4):304–309.

    Article  Google Scholar 

  5. Motosugi U, Ichikawa T, Sou H, et al. Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: which biological markers of the liver function affect the enhancement? J Magn Reson Imaging. 2009;30(5):1042–1046.

    Article  Google Scholar 

  6. Verloh N, Haimerl M, Rennert J, et al. Impact of liver cirrhosis on liver enhancement at Gd-EOB-DTPA enhanced MRI at 3 tesla. Eur J Radiol. 2013;82(10):1710–1715.

    Article  Google Scholar 

  7. Tamada T, Ito K, Higaki A, et al. Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers. Eur J Radiol. 2011;80(3):e311–e316.

    Article  Google Scholar 

  8. Yasaka K, Akai H, Kunimatsu A, et al. Liver fibrosis: deep convolutional neural network for staging by using gadoxetic acid-enhanced hepatobiliary phase MR images. Radiol. 2017;287(1):146–155.

    Article  Google Scholar 

  9. Marstal K, Berendsen F, Staring M, et al. SimpleElastix: a user-friendly, multilingual library for medical image registration. Proc CVPR. 2016;.

    Google Scholar 

  10. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proc CVPR. 2016; p. 770–778.

    Google Scholar 

  11. Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database. Proc CVPR. 2009; p. 248–255.

    Google Scholar 

  12. Tajbakhsh N, Shin JY, Gurudu SR, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35(5):1299–1312.

    Article  Google Scholar 

  13. Kendall MG. The treatment of ties in ranking problems. Biometrika. 1945;33(3):239–251.

    Article  MathSciNet  Google Scholar 

  14. Haarburger C, Langenberg P, Truhn D, et al. Transfer learning for breast cancer malignancy classification based on dynamic contrast-enhanced MR images. Proc BVM. 2018; p. 216–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Rippel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rippel, O., Truhn, D., Thüring, J., Haarburger, C., Kuhl, C.K., Merhof, D. (2019). Prediction of Liver Function Based on DCE-CT. In: Handels, H., Deserno, T., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2019. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25326-4_3

Download citation

Publish with us

Policies and ethics