Skip to main content

The Basic Difference in Constitution between the Mammalian X and the Drosophila X

  • Chapter
  • 173 Accesses

Part of the book series: Monographs on Endocrinology ((ENDOCRINOLOGY,volume 1))

Abstract

During the course of evolution progressive genetic deterioration occurred to the Y-chromosome. As a result, the Y-chromosome of placental mammals became a highly specialized male-determiner, having but one function namely to induce the indifferent embryonic gonad to develop as testis. The consequence of this specialization by the Y was that almost all of the original Mendelian genes which had been maintained by the X-chromosome, had to accommodate themselves to a hemizygous existence in the heterogametic male sex. The hemizygous existence for all the genes on the X should be very perilous since monosomy for even the smallest autosome (only one-fourth the size of the X) is apparently lethal in man.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barr, M. L., and L. F. Bertram: A morphological distinction between neurones of the male and female and the behavior of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163, 676–677 (1949).

    Article  PubMed  CAS  Google Scholar 

  • Galton, M., and S. F. Holt: Asynchronous replication of the mouse sex chromosomes. Exp. Cell Res. 37, 111–116 (1965).

    Article  PubMed  CAS  Google Scholar 

  • German, J. L.: DNA synthesis in human chromosomes. Trans. N. Y. Acad. Sci. 24, 395–407 (1962).

    CAS  Google Scholar 

  • Gilbert, C. W., S. Muldal, L. G. Lajtha, and J. Rowley: Time-sequence of human chromosome duplication. Nature 195, 869–873 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Grumbach, M. M., and A. Morishima: Sex chromatin and the sex chromosomes: on the origin of sex chromatin from a single X-chromosome. Acta Cytol. 6, 46–60 (1962).

    PubMed  CAS  Google Scholar 

  • Heitz, E.: Die somatische Heteropyknose bei Drosophila melanogaster und ihre genetische Bedeutung. Z. Zellforsch. Abt. Histochem. 20, 237–287 (1933).

    Article  Google Scholar 

  • Henking, H.: Untersuchungen über die ersten Entwicklungsvorgänge in den Eiern der Insekten. II. Über Spermatogenese und deren Beziehung zur Eientwicklung bei Pyrrhocoris apterus L. Z. wiss. Zool. 51, 685–736 (1891).

    Google Scholar 

  • Jagiello, G., and S. Ohno: Isopycnotic behavior of the X-univalent in the XO mouse ovum. Exp. Cell Res. 41, 459–462 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Junker, H.: Cytologische Untersuchungen an den Geschlechtsorganen der halbzwitterigen Steinfliege Perla marginata (Panzer). Arch. Zellforsch. 17, 185–259 (1923).

    Google Scholar 

  • Kaufmann, B. P.: Somatic mitoses of Drosophila melanogaster. J. Morphol. 56, 125–156 (1934).

    Article  Google Scholar 

  • Klinger, H. P.: The fine structure of the sex chromatin body. Exp. Cell Res. 14, 207–211 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Mcclung, C. E.: The spermatocyte divisions of the Locustidae. Kansas Univ. Sci. Bull. 1, 185–238 (1902).

    Google Scholar 

  • Muller, H. J.: Evidence of the precision of genetic adaptation. Harvey Lectures Ser. 43, 165–229 (1947–1948).

    Google Scholar 

  • Ohno, S., W. D. Kaplan, and R. Kinosita: On the end-to-end association of the X and Y-chromosomes of Mus musculus. Exp. Cell Res. 18, 282–290 (1959 a).

    Google Scholar 

  • Ohno, S., W. D. Kaplan, and R. Kinosita: Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp. Cell Res. 18, 415–418 (1959 b).

    Google Scholar 

  • Ohno, S., W. D. Kaplan, and R. Kinosita: X-chromosome behavior in germ and somatic cells of Rattus norvegicus. Exp. Cell Res. 22, 535–544 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., and T. S. Hauschka: Allocycly of the X-chromosome in tumors and normal tissues. Cancer Res. 20, 541–545 (1960).

    PubMed  CAS  Google Scholar 

  • Ohno, S., and S. Making: The single X nature of the sex chromatin in man. Lancet I, 78–79 (1961).

    Google Scholar 

  • Taylor, J. H.: Asynchronous duplication of chromosomes in cultured cells of Chinese hamster. J. Biophys. Biochem. Cytol. 7, 455–464 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Tjio, J. H., and A. Levan: Notes on the sex chromosomes of the rat during male meiosis. Anales Estac. Exp. Aula Dei 4, 173–184 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Ohno, S. (1966). The Basic Difference in Constitution between the Mammalian X and the Drosophila X. In: Sex Chromosomes and Sex-Linked Genes. Monographs on Endocrinology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88178-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88178-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88180-0

  • Online ISBN: 978-3-642-88178-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics