Skip to main content

Model of the Stress-Strain Behaviour of Rock Masses

  • Chapter
Rock Mechanics
  • 203 Accesses

Abstract

The stress-strain behaviour of rock masses is of considerable importance with regard to stability investigations and thus also with regard to the designing and construction of structures in rock. It is found that, even in the case of underground openings with a relatively limited overburden, the rock mass usually represents the actual load-carrying structure, aided by the opening’s support and lining. Similarly, where concentrated loads are introduced into the bedrock as in the case of concrete arch dams, the rock mass forms a critical part of the overall structure. Deformations in the bedrock lead to loading of the arch dam and vice versa, so that an interaction between both components of the structure arises. The rock mass, perhaps in combination with a retaining structure, also has the task of dissipating loads due to dead weight and other influences when slopes are constructed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barden, L.: Stresses and displacements in a cross-anisotropic soil. Géotechnique 13 (1963) 198–210

    Article  Google Scholar 

  2. Barton, N.: A relationship between joint roughness and joinshear strength. In: Proc. ISRM Symp. on Rock Fracture, Nancy 1971.

    Google Scholar 

  3. Barton, N.: A review of the shear strength of filled discontinuities in rock. Publ. of the Norw. Geotechn. Inst., 105 (1974).

    Google Scholar 

  4. Barton, N.: Review of a new shear strength criterion for rock joints. Publ. of the Norw. Geotechn. Inst., 105 (1974).

    Google Scholar 

  5. Barton, N.; Bandis, S.; Bakhtar, K.: Strength, deformation and conductivity coupling of rock joints. Int. J. Rock ivlech. Min. Sci. Geomech. Abstr. 22, No. 3, 121–140.

    Google Scholar 

  6. Bieniawski, Z.T.: Estimating the strength of rock materials, J. S. Afr. Inst. of Min. Metall., 74 (1974) 312–320.

    Google Scholar 

  7. Brace, W.F.: Brittle fracture of rocks. Inc State of Stress in Earth’s Crust (ed. by W.R. Judd ). New York: Elsevier 1964.

    Google Scholar 

  8. Cavers, D.S.: Simple methods to analyze buckling of rock slopes. Rock Mech. 14 (1981) 87–104.

    Article  Google Scholar 

  9. Desai, C.S., Abel, J.F.: Introduction to the finite element method. New York: van Nostrand 1972.

    Google Scholar 

  10. Erichsen, C.: Gekoppelte Spannungs-Sickerströmungsberechnungen von Bauwerken in klüftigem Fels unter Berücksichtigung des nichtlinearen Spannungsverschiebungsverhaltens von Trennflächen. Publications of the Institute for Foundation Engineering, Soil Mechanics, Rock Mechanics and Waterways Construction at the RWTH Aachen, Vol. 15 (1987).

    Google Scholar 

  11. Fairhurst, C.; Cook, N.G.W.: The phenomenon of rock splitting parallel to the direction of maximum compression in the neighbourhood of a surface. Im Proc. 1st Congr. ISRM, Vol. 1, Lisbon 1966.

    Google Scholar 

  12. Feiser, J.: Numerische Untersuchungen zum Einfluß der Trennflächen auf das Spannungs-verformungsverhalten on Fels. Unpublished Diploma thesis, RWTH Aachen 1982.

    Google Scholar 

  13. Feiser, J.: Mechanisches Verhalten eines Sedimentgesteins mit tongefüllten Schichtfugen und offenen Klüften. Publications of the Institute for Foundation Engineering, Soil Mechanics, Rock Mechanics and Waterways Construction at the RWTH Aachen, Vol. 16 (1988).

    Google Scholar 

  14. Franklin, J.A.; Hoek, E.: Developments in triaxial testing technique. Rock Mech. 2 (1970) 223–280.

    Article  Google Scholar 

  15. Gerrard, C.M.; Background to mathematical modelling in geomechanics: The roles of fabric and stress history. In: Finite Elements in Geomechanics (ed. by G. Gudehus ). London, New York, Sydney, Toronto: Wiley and Sons 1977.

    Google Scholar 

  16. Hahn, H.G.: Bruchmechanik. Stuttgart: Teubner 1976.

    MATH  Google Scholar 

  17. Hill, R.: The mathematical theory of plasticity. Oxford: University Press 1960.

    Google Scholar 

  18. Hoek, E.; Brown, E.T.; Underground excavations in rock. London: The Inst. of Min. and Metall. 1980.

    Google Scholar 

  19. Hojem, J.M.P.; Cook, N.G.W.: The design and construction of a triaxial and polyaxial cell for testing rock specimens. South Afr. Mech. Eng. 18 (1968) 57–61.

    Google Scholar 

  20. John, K.W.: Festigkeit und Verformbarkeit von druckfesten, regelmäßig gefügten Dis- kontinuen. Publications of the Institut für Bodenmechanik und Feismechanik at the TH Karlsruhe, Vol. 37 (1969).

    Google Scholar 

  21. Kiehl, J.R.: Bestimmung elastischer Kennwerte von anisotropem geschiefertem Gebirge aus den Ergebnissen von Bohrlochaufweitungsversuchen. In: Proc. 4th Nat. Rock Mech. Symp., Aachen 1980.

    Google Scholar 

  22. Kiehl, J.R.; Wittke, W.: Ermittlung der Verformbarkeit von anisotropem Fels aus den Ergebnissen von Feldversuchen. In: Proc. 5th Congr. ISRM, Melbourne 1983.

    Google Scholar 

  23. Ladanyi, B.; Archambault, G.: Simulation of shear behaviour of a jointed rock mas In: Proc. 11th Symp. on Rock Mech., AIME, New York 1970.

    Google Scholar 

  24. Langer, M.: Grundzüge einer theoretischen Salzmechanik. In: Proc. 3rd Nat. Rock Mech. Symp., Aachen 1978.

    Google Scholar 

  25. Leichnitz, W.: Mechanische Eigenschaften von Felstrennflächen im direkten Scherver- such. Publications of the Institut für Bodenmechanik und Felsmechanik at the TH Karlsruhe, Vol. 89 (1981).

    Google Scholar 

  26. Lekhnitskii, S.G.: Theory of elasticity of an anisotropic elastic body. San Francisco: Holden-Day 1963.

    MATH  Google Scholar 

  27. Lombardi, G.: Berücksichtigung der räumlichen Einflüsse im Bereich der Ortsbrust. In: Proc. 1st Nat. Rock Mech. Symp., Essen 1974.

    Google Scholar 

  28. Masure, P.: Behaviour of rocks with two-dimensional discontinuous anisotropy. In: Proc. 2nd Congr. ISRM, Vol. 1, Belgrade 1970.

    Google Scholar 

  29. Pande, G.N., Sharma, K.G.: A multi-laminate model of clays - a numerical study of the influence of rotation of the principal stress axes. In: Proc. of the Symp. on Implementation of Computer Procedures and Stress-strain laws in Geotech. Eng., Vol. 2, Chicago 1981.

    Google Scholar 

  30. Patton, F.D.: Multiple modes of shear failure in rock. In: Proc. 1st Congr. ISRM, Vol. 1, Lisbon 1966.

    Google Scholar 

  31. Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9 (1966) 243–377.

    Article  Google Scholar 

  32. Pinto, J.L.: Stresses and strains in an anisotropic-orthotropic body. Im Proc. ist Congr. ISRM, Vol. 1, Lisbon 1966.

    Google Scholar 

  33. Sadowsky, M.A.; Sternberg, E.: Stress concentration around a triaxial ellipsoidal cavity. J. Appl. Mech. 16 (1949) 149–157.

    MATH  MathSciNet  Google Scholar 

  34. Salamon, M.D.G.: Elastic moduli of a stratified rock mass, int. J. Rock Mech. M€n. Sci. 5 (1968) 512–527.

    Google Scholar 

  35. Schneider, H.J.: Reibungs-und Verformungsverhalten von Trennflächen in Fels. Publications of the Institut für Bodenmechanik und Felsmechanik at the TH Karlsruhe, Vol., 65 (1975).

    Google Scholar 

  36. Schofield, A.N.; Wroth, C.P.: Critical state soil mechanics. London: McGraw-Hill 1968.

    Google Scholar 

  37. Stille, H.; Franzen, T.; Holmberg, R.: Some aspects of the tunneling practice in Sweden. In: Proc. Int. Congr. on Tunnelling “Tunnel 81”, Vol. 2, Düsseldorf 1981.

    Google Scholar 

  38. Zienkiewicz, O.C.: The finite element method. London: McGraw-Bill 1977.

    MATH  Google Scholar 

  39. Zienkiewicz, O.C.; Pande, G.N.: Time-dependent multilaminate model of rocks–a numerical study of deformation and failure of rock masses. Int. J. Numerical and Analytical Methods in Geornech. 1 (1977) 219–247.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wittke, W. (1990). Model of the Stress-Strain Behaviour of Rock Masses. In: Rock Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88109-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88109-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88111-4

  • Online ISBN: 978-3-642-88109-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics