Skip to main content

A Discrepancy-Based Analysis of Figures of Merit for Lattice Rules

  • Conference paper
Monte-Carlo and Quasi-Monte Carlo Methods 1998
  • 288 Accesses

Abstract

Classical figures of merit for choosing quasi-Monte Carlo methods for integration over thes-dimensional unit cube are the L p star discrepancy of the corresponding set of quadrature points and, when considering periodic integrands, Pα— usually withα an even positive integer. Hickernell (1998) introduced a generalised notion of discrepancy of which both these figures of merit are special cases. In this paper Hickernell’s decomposition of generalised discrepancy into lower-dimensional components is used to characterise differences between reported results achieved by rules selected according to these figures of merit. A further extension with application to rank-1 lattice rules and their k s copies is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Adams.Sobolev Spaces. Academic Press, New York, San Francisco, London, 1975.

    MATH  Google Scholar 

  2. M. Aronszajn. Theory of reproducing kernels.Trans. Amer. Math. Soc., 68: 337–404, 1950.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Cools and I. H. Sloan. Minimal cubature formula of trigonometric degree.Math. Comp., 65: 1583–1600, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. A. R. Disney and I. H. Sloan. Lattice integration rules of maximal rank formed by copying rank 1 rules.SIAM J. Numer. Anal., 29: 566–577, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Frank and S. Heinrich. Computing discrepancies of Smolyak quadrature rules.J. Complexity, 12: 287–314, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Frank and S. Heinrich. Computing discrepancies related to spaces of smooth periodic functions. InProceedings of the Second International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, volume 127 ofLecture Notes in Statistics, pages 238–250. Springer-Verlag, 1998.

    Google Scholar 

  7. A. Genz. Testing multidimensional integration routines. InTools, Methods and Languages for Scientific and Engineering Computation, pages 81–94, Amsterdam, 1984. North-Holland.

    Google Scholar 

  8. A. Genz. A package for testing multiple integration subroutines. InNumerical Integration: Recent Developments, Software and Applications, pages 337–340, Dordrecht, 1987. D. Reidel Publishing.

    Chapter  Google Scholar 

  9. F. J. Hickernell. A generalised discrepancy and quadrature error bound.Math. Comp., 67: 299–322, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  10. F. J. Hickernell.Lattice rules: how well do they measure up? Technical report Math-175. Hong Kong Baptist University, 1998.

    Google Scholar 

  11. S. Joe and I. H. Sloan. Implementation of a lattice method for numerical multiple integration.ACM Trans. Math. Software, 19: 523–545, 1993.

    Article  MATH  Google Scholar 

  12. T. N. Langtry. Geometric aspects of discrepancy. Technical report, December 1997.

    Google Scholar 

  13. H. Niederreiter.Random Number Generation and Quasi-Monte Carlo Methods. SIAM (Society for Industrial and Applied Mathematics), Philadelphia, Pennsylvania, 1992.

    Book  Google Scholar 

  14. H. Niederreiter and I. H. Sloan. Quasi-Monte Carlo methods with modified vertex weights. In H. Braß and G. Hämmerlin, editors,Numerical Integration IV, volume 112 ofInternat. Series of Numer. Math., pages 253–265, Basel, 1993. Birkhäuser.

    Chapter  Google Scholar 

  15. E. Novak, I. H. Sloan, and H. Woźniakowski. Tractability of tensor product linear operators.Journal of Complexity, 13: 387–418, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Saitoh.Integral Transforms, Reproducing Kernels and their Applications. Addison Wesley Longman, Essex, England, 1997.

    MATH  Google Scholar 

  17. I. H. Sloan and S. Joe.Lattice Methods for Multiple Integration. Oxford University Press, Oxford, 1994.

    MATH  Google Scholar 

  18. I. H. Sloan and J. N. Lyness. The representation of lattice quadrature rules as multiple sums.Math. Comp., 52: 81–94, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  19. I. H. Sloan and H. Woźniakowski. When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?Journal of Complexity, 14: 1–33, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  20. S. L. Sobolev.Some Applications of Functional Analysis in Mathematical Physics, volume 90 ofTranslations of Mathematical Monographs. American Mathematical Society, Providence, Rhode Island, third edition, 1991. Translated from the Russian by Harold H. McFaden.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Langtry, T.N. (2000). A Discrepancy-Based Analysis of Figures of Merit for Lattice Rules. In: Niederreiter, H., Spanier, J. (eds) Monte-Carlo and Quasi-Monte Carlo Methods 1998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59657-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59657-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66176-4

  • Online ISBN: 978-3-642-59657-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics