Skip to main content

Optische Mikrowellentechniken in Zugangsnetzen für die Mobilkommunikation

  • Chapter
Optische Kommunikationstechnik
  • 515 Accesses

Zusammenfassung

Künftige Zugangsnetze zum breitbandigen Kommunikationsnetz sollen neben der Vergrößerung der Dienstevielfalt Multimediaanwendungen mit hohen Datenraten gestatten. Da die Endgeräte an jedem Ort einsetzbar sein sollen, gewinnen breitbandige Mobilfunksysteme zunehmend an Bedeutung. Eine Realisierungsmöglichkeit hierfür sind hybride Glasfaser-Funksysteme (hybrid fibre radio, HFR). Sie enthalten einerseits Mikrowellenkomponenten für die Funkstrecken zwischen den Mobilterminals und den Basisstationen und andererseits optische Komponenten zur Herstellung einer breitbandigen, verlustarmen Verbindung zwischen Basis- und Kontrollstation (Abb. 30.1).

Allgemeine Literatur

Robertson, W.M.: Optoelectronic Techniques for Microwave and Millimeter-Wave Engineering, Norwood, USA, Artech House, 1995 — Petermann, K.: Laser Diode Modulation and Noise, Dordrecht Holland, Kluwer Academic Publishers 1988- Simons, R.: Optical Control of Microwave Devices, Norwood, USA, Artech House, 1990 — Zmuda,H.; Toughun, E.N.: Photonic Aspects of Modern Radar, Norwood, USA, Artech House, 1994 Grau, G.; Freude, W.: Optische Nachrichtentechnik, Berlin, Heidelberg, NewYork, Springer Verlag, 1991

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. Hunziker, S.; Baechtold, W.: Cellular remote antenna feeding: Optical fibre or coaxial cable? Electron. Lett. Vol. 34 (1998), 1038–1040

    Article  Google Scholar 

  2. Bruun, M.; Gliese, U,: Cost Competiveness of Fiber-Optic Infrastructures for Metropolitan Micro/PicoCellular Mobile Networks, IEEE Photonics Technol. Lett. Vol. 10, No.3, (1998), 459–461

    Article  Google Scholar 

  3. Olesen, H.; Jacobsen, G.: A Theoretical and Experimental Analysis of Modulated Laser Fields and Power Spectra, IEEE Journ. Quantum Electronics, Vol. QE-18, No. 12, Dec. (1982), 2069–2080

    Article  Google Scholar 

  4. Matsui, Y. et al.: 30-GHz bandwidth 1,55’ m strain-compensated InGaAlAs-InGaAsP MQW laser, IEEE Photonics Technol. Lett. Vol. 9, No.1, (1997), 25–27

    Article  Google Scholar 

  5. Noguchi, K.; Mitomi, O.; Miyazawa, H.: Low-voltage and broadband Ti:LiNbO 3 modulators operating in the millimeter wavelength region, Optical Fiber Communication OFC’ 96, San Jose, USA, (1996), Vol. 2, 205–206

    Google Scholar 

  6. Nowak, W.; Sauer, M.: Dynamic Range Improvement and Multiplexing in Optical Microwave Subcarrier Systems by Dispersion Management, Wiss. Zeitschrift der TU-Dresden, 46 (1997), 55–59

    Google Scholar 

  7. Park, J.; Shakouri, M.S.; Lau, K.L.: Millimeter-wave electro-optical up converter for wireless digital communictions, Electron. Lett. Vol. 31 (1995), 1085–1086

    Google Scholar 

  8. Cox, C.H. III,; Ackerman, E.I.; Betts, G.E.: Relationship between gain and noise figure of an analog link, 1996 IEEE MTT-S International Microwave Symposium Digest, 1551–1554

    Google Scholar 

  9. Olson, T.: An RF and Microwave Fiber-Optic Design Guide, Microwave Journal (1996), 54–78

    Google Scholar 

  10. Yen, H.W.; Gee, C.M.; Blauvelt, H.: High-Speed Optical Modulation Techniques, SPIE Vol. 545, Optical Technology for Microwave Applications II (1985), 2–9

    Article  Google Scholar 

  11. Daryoush, A.S. et al.: Interfaces for High-Speed Fiber-Optic Lins: Analysis and Experiment, IEEE Trans. Microwave Theory and Techniques Vol. 39 (1991), 2031–2044

    Article  Google Scholar 

  12. Smith, G.H., Novak, D.: Broadband Millimeter-Wave (38 GHz) Fiber-Wireless Transmission System Using Electrical and Optical SSB Modulation to Overcome Dispersion Effects, IEEE Photonics Technol. Lett., Vol. 10, No. 1, (1998), 141–143

    Article  Google Scholar 

  13. Schmuck, H. et al.: Faseroptische mm-Wellen-Übertragungstechnik und ihre Anwendung, telekom praxis, Band 74, (1997), 9–15

    Google Scholar 

  14. Schmuck, H.; Heidemann, R.: Hybrid fibre-radio field experiment at 60 GHz, 22th Europ. Conf. on Optical Comamun., (ECOC’ 96), Sept. 1996, Oslo, Norway, Conference Digest Vol. 4, 59–62

    Google Scholar 

  15. Helmolt, C.H. et al.: A Mobile Broad-Band Communication System Based on Mode-Locked Lasers, IEEE Trans. Microwave Theory and Techniques, Vol. 45, (1997), 1424–1430

    Article  Google Scholar 

  16. Wake, D. et al.: Video Transmission Over a 40 GHz Radio Fibre Link, Electron. Lett., Vol. 28, (1992), 2024–2025

    Article  Google Scholar 

  17. Braun, R.P., Villino, G. et al.: Optical Harmonic Upconversion for the Microwave Generation in a Bidirectional Braodband Mocile Communication System, Electron. Lett., Vol. 33, (1997), 1884–1886

    Article  Google Scholar 

  18. Simonis, G.J.; Purchase, K.G.: Optical Generation, Distribution, and Control of Microwaves Using Laser Heterodyne, IEEE Transactions on Microwave Theory and Techniques, Vol. 38, (1990), 667–669

    Article  Google Scholar 

  19. Braun, R.-P. et al.: Optical Microwave Generation and Transmission Experiments in the 12 and 60 GHz Region for Wireless Communications, IEEE Microwave Theory and Techniques, Vol. 46, (1998), 320–330

    Article  Google Scholar 

  20. Wake, D.; Lima, C.R.; Davies, P.A.: Optical Generation of Millimeter-Wave Signals for Fiber-Radio Systems Using a Dual-Mode DFB Semiconductor Laser, IEEE Trans. Microwave Theory and Techniques, Vol. 43, (1995), pp. 2270–2276

    Article  Google Scholar 

  21. Pajarola, S.; Guekos, G.; Kawaguchi, H.: Optical Millimeter-Wave Generation and Transmission Using a Dual-Polarization Emission External Cavity Diode Laser, Microwave Photonics MWP’ 97, Duisburg, Sept. 1997, paper TH3-1, Techn. Digest pp. 75–78

    Google Scholar 

  22. Freude, W.: Microwave Generation and Transmission with Chirping Laser Diodes and Dispersive Fibres. Microwave Photonics MWP’ 97, Duisburg, Sept. 1997, paper FR3-4, Techn. Digest pp. 261–264

    Google Scholar 

  23. Mathoorasing, D. et al.: 38 GHz Optical harmonic mixer for millimetre-wave radiowave systems, Electron. Lett., Vol. 31, (1995), 970–972

    Article  Google Scholar 

  24. Georges, J.B. et al.: Transmission of 300 Mbit/s BPSK at 39 GHz Using Feedforward Optical Modulation, Electron. Lett., Vol. 30, (1994), 160–161

    Article  Google Scholar 

  25. Ramos, R.T.; Seeds, A.J.: Fast Heterodyne Optical Phase-Lock Loop Using Double Quantum Well Laser Diodes, Electron. Lett., Vol. 28, (1992), 82–83

    Article  Google Scholar 

  26. Kitayama, K.; Kuri, T.: Dual lightwave technique for optical generation and transport of wireless signals, Microwave Photonics’ 97, Duisburg, Germany, Sept. 1997, paper TH2-0, Techn. Digest pp. 43–46

    Google Scholar 

  27. Burghard, H.; Scholl, H.: A low phase noise 10 GHz to 2 THz continously tunable optical microwave source by optical injection, Microwave Photonics’ 97, Duisburg, Germany, Sept. 1997, paper TH3-0, Techn. Digest pp. 71–74

    Google Scholar 

  28. Goldberg, L. et al.: Microwave signal generation with injection-locked laser diodes, Electron. Lett., Vol. 19, (1983), 491–493

    Article  Google Scholar 

  29. Braun, R.-P. et al.: Low Phase Noise Millimeter-Wave Generation at 64 GHz and Data Transmission Using Optical Side Band Inject ion Locking, IEEE Photonics Technology Letters Vol. 10, (1998), 728–730

    Article  Google Scholar 

  30. Kobayashi, S.; Kimura, T.: Optical Phase Modulation in an Injection Locked AIGaAs Semiconductor Laser, Electron. Lett., Vol. 18, (1982), 210–211

    Article  Google Scholar 

  31. Wang, J.: Petermann, K.: Small Signal Analysis for Dispersive Optical Fiber Communication Systems, journ. Lightwave Technol., Vol. 10, (1992), 96–100

    Article  Google Scholar 

  32. Gliese, U.; Norskov, S.; Nielsen, T.N.: Chromatic Dispersion in Fiber-Optic Microwave and MillimeterWave Links, IEEE Trans. Microwave Theory and Techniques Vol. 44 (1996), 1716–1724

    Article  Google Scholar 

  33. Hofstetter, R.; Schmuck, H.; Heidemann, R.: Dispersion Effects in Optical Millimeter-Wave Systems Using Self-Heterodyne Method for Transport and Generation, IEEE Transactions on Microwave Theory and Techniques, Vol. 43, (1995), 2263–2296

    Article  Google Scholar 

  34. Takahata, K. et al.: 46.5-GHz-Bandwidth Monolithic Receiver OEIC Consisting of a Waveguide p-i-n Photodiode and a HEMT Distributed Amplifier, IEEE Photonics Technology Letters Vol. 10, (1998), 1150–1152

    Article  Google Scholar 

  35. Scott, D.C et al.: High Power, High Frequency Traveling Wave Heterojunction Phototransistors with Integrated Polyimide Waveguide, 1998 IEEE MTT-S International Microwave Symposium, paper THIC-5

    Google Scholar 

  36. Engel, Th. et al.: Narrow-Band Photoreceiver OEIC on InP Operating at 38 GHz, IEEE Photonics Technology Letters Vol. 10, (1998), 1298–1300

    Article  Google Scholar 

  37. Lin, L. Y. et al.: High Speed Photodetectors with High Saturation for High Performance Microwave Photonic Systems, Microwave Photonics MWP’ 96, Kyoto, Japan, paper TH4-6, Techn.Digest pp. 313–316

    Google Scholar 

  38. Ortel Vertriebs GmbH: Produktübersicht 1995

    Google Scholar 

  39. Hunziker, S. et al.: Low Cost Fiber Optic Links for Cellular Remote Antenna Repeaters, Broadband Access Networks, D.W. Faulner, A.L. Harmer, IOS Press Ohmsha, 1997, 130–136

    Google Scholar 

  40. Wake, D.; Moodie, D.G.: Passive Picocell-prospects for increasing the radio range, Microwave Photonics MWP’ 97, Duisburg, Sept. 1997, paper FR3-6,Techn. Digest pp. 269–271

    Google Scholar 

  41. Smith, G.H. et al.: Fullduplex broadband millimetre-wave optical transport system for fibre-wirdeless access, Electron. Lett., Vol. 33, (1997), 1159–1160

    Article  Google Scholar 

  42. Braun, R.-P. et al.: Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking, Electron. Lett., Vol. 33, No. 16, (1997), 1395–1396

    Article  Google Scholar 

  43. O’Reilly, J.J et al.: RACE R2005: microwave optical duplex antenna, IEE Proc.-J, Vol. 140, No.6, (1993), 385–391

    MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grosskopf, G. (2002). Optische Mikrowellentechniken in Zugangsnetzen für die Mobilkommunikation. In: Voges, E., Petermann, K. (eds) Optische Kommunikationstechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56395-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56395-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63134-4

  • Online ISBN: 978-3-642-56395-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics