Skip to main content

Nichtlineare Optik und optische Signalverarbeitung

  • Chapter
  • 519 Accesses

Zusammenfassung

In der linearen Optik wird die Ausbreitung von Licht in Materie durch die Brechzahl n und die Dämpfungskonstante α beschrieben. Beide sind frequenzabhängige bzw. wellenlängenabhängige Größen, die unabhängig von der Strahlungsdichte des einfallenden Lichtes sind. Es gilt das Superpositionsprinzip, das besagt, daß Lichtsignale sich gegenseitig nicht beeinflussen und sich ungestört überlagern können. Die lineare Optik ist aber nur ein Grenzfall der Optik für kleine Strahlungsdichten. Bei großen Strahlungsdichten werden n und α von der Lichtleistung abhängig, und es tritt eine Vielzahl weiterer optischer Effekte auf, die die lineare Optik nicht kennt. Insbesondere gilt das Superpositionsprinzip nicht mehr. Licht kann durch Licht beeinflußt, gesteuert und geschaltet werden. Dies ist die Grundlage für die optische Signalverarbeitung, die in diesem Kapitel beschrieben wird.

Allgemeine Literatur

Agrawal, G.P.: Nonlinear fiber optics, London : Academic Press, 1995. — Boyd, R.W.: Nonlinear optics, Boston: Academic Press, 1991. — Butcher, P.N.; Cotter, D.: The elements of nonlinear optics , Cambridge: Cambridge University Press, 1991 — Eason, R. W.; Miller, A. (Editors): Nonlinear optics in signal processing, London : Chapman & Hall, 1993- Shen, Y.R.: The principles of nonlinear optics, New York: John Wiley & Sons, 1984.- Stegeman, G.I.: Nonlinear guided wave optics, in: “Contemporary nonlinear optics”, pp. 1-40 (Editors:Agrawal, G.P.;Boyd,R.W.), Boston: Academic Press, Inc. 1992. — Stegeman, G.I.;Miller, A.:Physics of alloptical switching devices, in: “Photonics in switching”, vol 1, Academic Press, 1993.- Sutherland, R.L.:Handbook of nonlinear optics, New York: Marcel Dekker, 1996

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. Sutherland, R.L.: Handbook of nonlinear optics, NewYork, Marcel Dekker, 1996, Kapitel4

    Google Scholar 

  2. s.[1], Kapitel 8

    Google Scholar 

  3. s.[1], Kapitel 2

    Google Scholar 

  4. Yamada, M.; Nada, N.; Saitoh, M.; Watanabe, K.: First-order quasiphase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation, Appl. Phys. Lett. 62, p. 435, 1993

    Article  Google Scholar 

  5. s. [1], Kapitel 3

    Google Scholar 

  6. Byer, R.L.: Parametric oscillation and nonlinear materials, in „Nonlinear Optics“, Editors. Harper, P.G., Wherrett, B.S., NewYork, Academic Press, 1977

    Google Scholar 

  7. Sohler, W.:Second order nonlinear guided wave interaction, in „Nonlinear Surface Electromagnetic Phenomena“, Editors: Ponath, H.E., Stegeman, G., NewYork, Elsevier Science, 1990, Kapitel 1

    Google Scholar 

  8. Suche, H.; Sohler, W.: Integrated optical parametric oscillators: J. Optoelectron. Dev. and Technology, vol 4, pp 1–20, 1989

    Google Scholar 

  9. Sohler, W.: Nonlinear integrated optics, in „NATO Asi Series E, New Directions in Guided Wave and Coherent Optics“, Editors: Ostrowsky, D.B.ans Spitz, E.,Vol 11, pp 449–480, 1984

    Google Scholar 

  10. s. [1] Kapitel 6

    Google Scholar 

  11. Inoue, K.: Four-wave mixing in an optical fiber in the zero-dispersion wavelength region, IEEE J. of Lightwave Technol., vol 10, pp 1553–1561, 1992

    Article  Google Scholar 

  12. s. [1], Kapitel 6

    Google Scholar 

  13. Shen, V.R.: Basic considerations of four-wave mixing and dynamic gratings, IEEE J. of Quantum Electron., QE-22 [8], pp 1196–1203, 1986

    Article  Google Scholar 

  14. Asobe, M.; Suzuki, K.; Kanamori, T.; Kubodera, K.: Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation, Appl. Phys. Lett. 60, pp 1153–1154, 1992

    Article  Google Scholar 

  15. Stegemann, G.I.: Guided wave approaches to optical bistability, IEEE J. of Quantum Electron., QE-18, pp 1610–1619, 1982

    Article  Google Scholar 

  16. Vassallo, C.: Rigorous and approximate calculations of antireflection layer parameter for traveling wave diode laser amplifiers, Electron. Lett., vol 21, pp 333–334, 1985

    Article  Google Scholar 

  17. Tiemeijer, L.; Thijs, P.J.A.; v. Dongen, T.; Binsma, J.J.M.; Jansen, E.f.; Verboven, A.J.M.: 27 dB gain unidirectional 1300nm polarization-insensitive multiple quantum well laser amplifier module, IEEE Photon. Technol. Lett. 6, pp 1430–1432, 1994

    Article  Google Scholar 

  18. Doussiere, P.; Garabedian, P.; Graver, C.; Bonnevie, D.; Fillion, T.; Derouin, E.; Monnot, M.; Provost, J.: Leclerc, D.; Klenk; M.: 1.55 μm polarisation independent semiconductor optical amplifier with 25 dB fiber to fiber gain, IEEE Photon. Technol. Lett. 6, pp 170–172, 1994

    Article  Google Scholar 

  19. Magari, K.; Okamoto, M.; Noguchi, Y.: 1.55 μm polarisation-insensitive high-gain tensile-strained barrier MQW optical amplifier, IEEE Photon. Technol. Lett. 3, pp 998–1000, 1991

    Article  Google Scholar 

  20. Newkirk, M.; Miller, B.; Koren, U; Chien, M.; Jopson, R.; Burrus, C: 1.5 μm multiquantum-well semiconductor optical amplifier with tensile compressively strained wells for polarisation-independent gain, IEEE Photon. Technol. Lett. 5, pp 406–408, 1993

    Article  Google Scholar 

  21. Dutta, N.K.: Calculated Absorption, emission and gain in InGaAsP, J. of Appl. Phys., vol 51, pp 6095–6100, 1980

    Article  Google Scholar 

  22. Saleh, B.E.A.; Teich, M.C.:Fundamentals of photonics, Kapitel 16.2, John Wiley, NewYork, 1991

    Book  Google Scholar 

  23. Mukai, T.; Saitoh, T.: Detuning characteristics of conversion efficiency of nearly degenerate four-wave mixing in a 1,5 μm traveling-wave semiconductor laser amplifier, IEEE J. of Quantum Electron., vol 16, pp 865–875, 1990

    Article  Google Scholar 

  24. Obermann, K.; Mecozzi, A., Mørk, J: Theory of four-wave mixing, in „Photonic Devices for Telecommunications“, Editor: Guekos, G., Springer-Verlag, Berlin, 1999

    Google Scholar 

  25. Agrawal, G.P.: Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifers, J. Opt. Soc.Am. B, vol 5, pp 147–159, 1988

    Article  Google Scholar 

  26. Adams, M.J.; Davies, D.A.O.; Tatham, M.C.; Fisher, M.A.: Nonlinearities in semiconductor laser ampli fiers, Opt. and Quantum Electron., vol 27,pp 1–13, 1995

    Article  Google Scholar 

  27. Uskov, A.; Mørk, J.: Mørk, J.: Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral hole burning, IEEE J. of Quantum Electron., vol 30, pp 1769–1781, 1994

    Article  Google Scholar 

  28. Osinski, M.; Buus, J.: Linewidth broadening factor in semiconductor lasers-an overview, IEEE J. of Quantum Electron. QE-23, pp 9–29, 1987

    Article  Google Scholar 

  29. Wiesenfeld, J.M.: Gain dynamics and associated nonlinearities in semiconductor optical amplifiers. Intern. Journ, of High Speed Electronics and Systems, vol 7,pp 179–222, 1996

    Article  Google Scholar 

  30. Hall, K.L.; Lenz, G.; Ippen, E.P.; Koren, U; Raybon, G.: Carrier heating and spectral hole burning in strained-layer quantum-well laser amplifiers at 1.5 μm, Appl. Phys. Lett. 61, pp 2512–2514, 1993

    Article  Google Scholar 

  31. Hall, K.L.; Lenz, G.; Darwish, A.M.; Ippen, E.P.: Subpicosecond gain and index nonlinearities in InGaAsP diode lasers, Optics Comm., vol 111, pp 589–612, 1994

    Article  Google Scholar 

  32. Manning, R,J.; Ellis, A.D.; Poustie, A,J.; Blow, K.J.: Semiconductor laser amplifier for ultrafast all-optical signal processing. J. Opt. Soc. Am. B, vol 14,pp 3204–3216, 1997

    Article  Google Scholar 

  33. Bennett, B.R.; Soref, R.A.; DelAlamo, J.A: Carrier-induced change in refractive index of InP,GaAs and InGaAsP, IEEE J. of Quantum Electron., vol 26, pp 113–122, 1990

    Article  Google Scholar 

  34. Groükopf, G.; Küler, L.; Ludwig, R.; Schnabel, R.; Weber, H.G.: Semicondutor laser optical amplifier in switching and distribution networks, Opt. and Quantum Electron., vol 21,pp 59–74, 1989

    Article  Google Scholar 

  35. Osinski, M.; Adams, M.J.: Gain spectra of quaternary semiconductors, IEE Proc., vol 129, pp 229–236,1982

    Google Scholar 

  36. Agrawal, G.P.; Olsson, N.A.: Selfphase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers, IEEE J. of Quantum Electron., vol 25,pp 2297–2306, 1989

    Article  Google Scholar 

  37. Uskov, A.; Mørk, J.; Mark, J.: Theory of short-pulse gain saturation in semiconductor laser amplifiers, IEEE Photon. Technol. Lett. 4, pp 442–446, 1992

    Article  Google Scholar 

  38. Mecozzi, A.; Mørk, J.: Saturation induced by pisosecond pulses in semiconductor optical amplifiers, J. Opt. Soc.Am. B, vol 14, pp 761–770, 1997

    Article  Google Scholar 

  39. Diez, S.; Ludwig, R.; Weber, H.G.: Gain-transparent SOA-switch for high bitrate Add/Drop multiplexing, IEEE Photon. Technol. Lett. 11, pp 60–62, 1999

    Article  Google Scholar 

  40. Ludwig, R.; Pieper, W.; Schnabel, R.; Diez, S.; Weber, H.G.: Four-wave mixing in semiconductor laser amplifiers: application for optical communication systems, Fiber and Integrated Optics, vol 16, pp 211–223, 1996

    Article  Google Scholar 

  41. Diez, S.; Schmidt, C, Ludwig, R.; Weber, H.G.; Obermann, K.; Kind, S.; Koltchanov, I.; Petermann, K.: Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching, IEEE J. of Selected Topics in Quantum Electron., vol 3, pp 1131–1145, 1997

    Article  Google Scholar 

  42. Mecozzi, A.; Scotti, S.; D’Ottavi, A.; Iannone, E.; Spano, P.: Four-wave mixing in traveling-waves semiconductor, amplifiers, IEEE J. of Quantum Electron., vol 31,pp 689–699, 1995

    Article  Google Scholar 

  43. Scotti, S.; Mecozzi, A.: Frequency conversion based on FWM in traveling-wave optical amplifiers: theoretical aspects, Fiber and Integrated Optics, vol 15, pp 243–256, 1996

    Article  Google Scholar 

  44. Zhou, J.; Park, N.; Dawson, J.W.; Vahala, K.J.; Newkirk, M.A.; Miller, B.I.: Efficiency of braodband fourwave mixing wavelength conversion using semiconductor traveling-wave amplifiers, IEEE Photon. Technol. Lett. 6, pp 50–53, 1994

    Article  Google Scholar 

  45. Danielsen, S.L.; Jørgensen, C.; Vaa, M.; Mikkelsen, B.; Stubkjaer; K.E.; Doussiere, P.; Pommerau, F.; Goldstein, L.; Ngo, R.; Goix, M.: Bit error rate assestment of 40 Gbit/s all-optical polarisation independent wavelength converter, Electron. Lett., vol 32, pp 1688–1690, 1996

    Article  Google Scholar 

  46. Bray, M.E.; O’Mahony, M.J.: Cascading gain-saturation semiconductor laser-amplifier wavelength translators, IEE Proc.-Optoelectron, vol 143, pp 1–6, 1996

    Article  Google Scholar 

  47. Jørgensen, C; Danielsen, S.L.; Durhuus, T.; Mikkelsen, B.; Stubkjaer, K.E.; Vodjdani, N.; Ratovelomanana, F.; Enard, A.; Glastre, G.; Rondi, D.; Blondeau, R.: Wavelength converson by optimized monolithic integrated Mach-Zehnder interferometer, IEEE Photon. Technol. Lett., vol 8, pp 521–523, 1996

    Article  Google Scholar 

  48. Ratovelomanana, F.; Vodjdani, N.; Enard, A.; Glastre, G.; Rondi, D.; Blondeau, R.; Dupes, A.; Billés, L.; Simon, J.C: Regeneration improvement in all-optical wavelength converter, based on a Mach-Zehnder interferometer, by means of phase-shifter section, Electron. Lett., vol 33, pp 1629–1630, 1997

    Article  Google Scholar 

  49. Mikkelsen, B.; Vaa, M.; Poulsen, H.N.; Danielsen, S.L.; Jørgensen, C; Kloch, A.; Hansen, P.B.; Stubkjaer, E.E.; Wünstel, K.; Daub, K.; Lach, E.; Laube, G.; Idler, W.; Schilling, M.; Bouchoule, S.: 40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer, Electron. Lett., vol 33, pp 133–134, 1997

    Article  Google Scholar 

  50. Inoue, K.; Toba, H.: Wavelength conversion experiment using fiber four-wave mixing, IEEE Photon. Technol. Lett., vol 4, pp 69–71, 1992

    Article  Google Scholar 

  51. Watanabe, S.; Chikama, T.: Highly efficient conversion and parametric gain of non degenerate forward four-wave mixing in a singlemode fiber, Electron. Lett., vol 30, pp 163–164, 1994

    Article  Google Scholar 

  52. Watanabe, S.; Takeda, S.; Ishikawa, G.; Ooi, H.; Nielsen, I.G.; Sonne, C: Simultaneous wavelength conversion and optical phase conjugation of 200 Gbit/s (5 x 40 Gbit/s) WDM signal using a highly nonlinear fiber four-wave mixer, Proc. 23rd Europ. Conf. Opt. Commun. (ECOC), Edinburg, UK, vol 5, pp 1–4, 1997

    Google Scholar 

  53. Diez, S.; Schmidt, C; Ludwig, R.; Weber, H.G.; Obermann, K.; Kindt, S.; Koltchanov, I.; Petermann, K.: Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching, IEEE J. of Selected Topics in Quantum Electron., vol 3, pp 1131–1145, 1997

    Article  Google Scholar 

  54. Lee, R.B.; Geraghty, D.F.; Verdiell, M.; Ziari, M.; Mathur, A.; Valhala, K.J.: Cascaded wavelength conversion by four-wave mixing in a strained semiconductor optical amplifier at 10 Gbit/s, IEEE Photon. Technol. Lett., vol 9, pp 752–754, 1997

    Article  Google Scholar 

  55. Schunk, N.; Großkopf, G.; Ludwig, R.; Schnabel, R.; Weber, H.G.: Frequency conversion by nearly degenerate four-wave mixing in traveling-wave semiconductor laser amplifier, Proc. Inst. Electr. Eng., vol 137,pp 209–214, 1990

    Google Scholar 

  56. Contertabile, G.; Martelli, F.; Mecozzi, A.; Graziani, L.; D’Ottavi, A.; Spano, P.; Guekos, G.; Dall’Ara, R.; Eckner, J.: Efficiency flattering and equalization of frequency up-and down-conversion using fourwave mixing in semiconductor optical amplifiers, IEEE Photon. Technol. Lett., vol 10, pp 1398–1400, 1998

    Article  Google Scholar 

  57. Morgan, T.J; Lacey, J.P.R.; Tucker, R.S.: Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency, IEEE Photon. Technol. Lett., vol 10, pp 1401–1403, 1998

    Article  Google Scholar 

  58. Lacey, J.P.R.; Madden, S.J.; Summerfield, M.A.: Four-channel polarisation-insensitive optically transparent wavelength converter, IEEE Photon. Technol. Lett., vol 9, pp 1355–1357, 1997

    Article  Google Scholar 

  59. Hasegawa, T.K.; Inoue, K.; Oda, K.: Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique, IEEE Photon. Technol. Lett., vol 7, p 497, 1995

    Article  Google Scholar 

  60. Jopson, R.M.; Tench, R.E.: Polarisation-independent phase conjugation of lightwave signals, Electron. Lett., vol 29, pp 2216–2217, 1993

    Article  Google Scholar 

  61. Cortes, P.; Chbat, M.; Artigaud, S.; Beylat, J.; Chesnoy, J.: Below 0.3 dB polarisation penalty in 10 Gbit/s directly modulated DFB signal over 160 km using Mid-span spectral inversion in a semiconductor laser amplifier, Conference on Optical Communication, ECOC Brussels, Techn. Digest, vol 1, pp 271–274, 1995

    Google Scholar 

  62. Schnabel, R.; Hilbk, U; Hermes, Th.; Meissner, P.; Helmolt, C.; Magari, K.; Raub, R; Pieper, W.; Westphal, F.J.; Ludwig, R.; Küller; L.; Weber, H.G.: Polarisation insensitive frequency conversion of a 10-channel OFDM signal using four-wave-mixing in a semiconductor laser amplifier, IEEE Photon. Technol. Lett., vol 6, pp 56–58, 1994

    Article  Google Scholar 

  63. Yoo, S.J.B; Caneau, C.; Bhat, R.; Koza, M.A.; Rajhel, A.; Antoniades, N.: Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding, Appl. Phys. Lett., vol 68, pp 2609–2611, 1996

    Article  Google Scholar 

  64. Bennion, I.; Goodwin, M.J.: Third-order nonlinear guided-wave optical devices, in „Nonlinear Optics in Signal Processing“, Editors: Eason, R.W., Miller, A.; Chapman and Hall, London, 1993

    Google Scholar 

  65. Frieberg, S.R.; Weiner, A.M.; Sieberberg, Y.; Sfez, B.G.; Smith, P.W.: Femtosecond switching in a dual-corefiber nonlinear coupler, Opt. Lett., vol 13, pp 904–906, 1988

    Article  Google Scholar 

  66. Jinno, M.; Matsumoto, T.: Nonlinear Sagnac interferometer switch and its applications, IEEE J. of Quantum Electron., vol 28, pp 875–882, 1992

    Article  Google Scholar 

  67. Bigo, S.; Leclerc, O.; Desurvire, E.: All-optical fiber signal processing and regeneration for solition communications, IEEE J. of Selected Topics in Quantum Electron., vol 3, pp 1208–1223, 1997

    Article  Google Scholar 

  68. Bigo, S.; Leclerc, O.; Desurvire, E.: All-optical fiber signal processing and regeneration for soliton communications, IEEE J. of Selected Topics in Quantum Electron., vol 3, pp 1208–1223, 1997

    Article  Google Scholar 

  69. Jinno, M.: Nonlinear Sagnac interferometer switch and its applications, IEEE J. of Quantum Electron., vol 28, pp 875–882, 1992

    Article  Google Scholar 

  70. Uchiyama, K.; Takara, H.; Kawanishi, S.; Morioka, T.; Satuwatari, M.: Ultrafast polarisation-independent all-optical switching using a polarization diversity scheme in the nonlinear optical loop mirror, Electron. Lett., vol 28, pp 1864–1865, 1992

    Article  Google Scholar 

  71. Bülow, H.; Veith, G.: Polarisation-independent switching in a nonlinear optical loop mirror by a dual wavelength switching pulse, Electron. Lett., vol 29, pp 588–589, 1993

    Article  Google Scholar 

  72. Uchiyama, K.; Kawanishi, S.; Takara, H.; Morioka, T.; Saruwatari, M.: 100 Gbit/s to 6.3 Gbit/s demultiplexing experiment using polarisation-independent nonlinear optical loop mirror, Electron. Lett., vol 30, pp 873–874, 1994

    Article  Google Scholar 

  73. Uchiyama, K.; Takara, H.; Morioka, T.; Kawanishi, S.; Saruwatari, M.: 100 Gbit/s multiplechannel output all-optical demultiplexer based on TDM-WDM conversion in a nonlinear optical loop mirror, Electron. Lett., vol 32, pp 1989–1991, 1996

    Article  Google Scholar 

  74. Eiselt, M.; Pieper, W.; Weber, H.G.: SLALOM: Semiconductor Laser Amplifier in a Loop Mirror, IEEE J. of Lightwave Technol., vol 13, pp 2099–2012, 1995

    Article  Google Scholar 

  75. Ellis, A.D.; Spirit, D.M.: Compact 40 Gbit/s optical demultiplexer using a GaInAsP optical amplifier, Electron. Lett., vol 29, pp 2115–2116, 1993

    Article  Google Scholar 

  76. Suzuki, K.; Iwatsuki, K.; Nishi, S.; Saruwatari, M.: Error-free demultiplexing of 160 Gbit/s pulse signal using optical loop mirror including semiconductor laser amplifier, Electron. Lett., vol 30, pp 1501–1503, 1994

    Article  Google Scholar 

  77. Pieper, W.; Jahn, E.; Eiselt, M.; Ludwig, R.; Schnabel, R.; Ehrhardt, A.; Ehrke, H.J.; Weber, H.G.: ,Optical Semiconductor Switching Devices, in: „Photonics Networks“, edited by G. Prati (Springer, London, 1997), pp 473–487

    Chapter  Google Scholar 

  78. Diez, S.; Ludwig, R.; Weber, H.G.: All-optical switch for TDM and WDM/TDM systems demonstrated in a 640 Gbit/s demultiplexing experiment, Electron. Lett., vol 34, pp 803–805, 1998

    Article  Google Scholar 

  79. Jahn, E.; Agrawal, N.; Ehrke, H.J.; Ludwig, R.; Pieper, W.; Weber, H.G.: Monolithically integrated asymmetric Mach-Zehnder interferometer as a 20 Gbit/s all-optical add/drop multiplexer for OTDM systems, Electron. Lett., vol 32, pp 216–217, 1996

    Article  Google Scholar 

  80. Hess, R.; Duelk, W.; Vogt, W.; Gamper, E.; Gini, E.; Besse, P.A.; Melchior, H.; Jepsen, K.S.; Mikkelsen, R; Vaa, M.; Poulsen, H.N.; Clausen, A.T.; Stubkjaer, K.E.; Bouchoule, S.; Devaux, R: Simultaneous all-optical add and drop multiplexing of 40 Gbit/s OTDM signals using monolithically integrated Mach-Zehnder interferometer, Electron. Lett., vol 34, pp 579–580, 1998

    Article  Google Scholar 

  81. Diez, S.; Ludwig, R.; Weber, H.G.: Gain-transparent SOA-switch for high-bitrate OTDM add/drop multiplexing, IEEE Photon, Technol. Lett., vol. 11, pp 60–62, 1999

    Article  Google Scholar 

  82. Morioka, T.; Kawanishi, S.; Uchiyama, K.; Takara, H.; Saruwatari, M.: Polarisation-independent 100 Gbit/s all-optical demultiplexer using four-wave mixing in a polarisation-maintaining fibre loop, Electron. Lett., vol 30, pp 591–592, 1994

    Article  Google Scholar 

  83. Morioka, T.; Takara, H.; Kawanishi, S.; Kitoh, T.; Saruwatari, M.: Error-free 500 Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontiuum short pulses, Electron. Lett., vol 32, pp 833–834, 1996

    Article  Google Scholar 

  84. Kawanishi, S.; Morioka, T.; Kamatani, O.; Takara, H.; Jacob, J.M.; Saruwatari, M.: 100 Gbit/s all-optical demultiplexing using four-wave mixing in a travelling wave laser diode amplifier, Electron. Lett., vol 30, pp 981–982, 1994

    Article  Google Scholar 

  85. Morioka, T.; Takara, H.; Kawanishi, S.; Uchiyama, K.; Saruwatari, M.: Polarisation-independent alloptical demultiplexing up to 200Gbit/s using four-wave mixing in a semiconductor laser amplifier, Electron. Lett., vol 32, pp 840–842, 1996

    Article  Google Scholar 

  86. Islam, M.N.: Ultrafast all-optical switching devices, in: „Photonic switching and interconnects“, Editor: Marrakchi, A.; Marcel Dekker, NewYork, 1994

    Google Scholar 

  87. Ahn, K.H.; Vaziri, M.; Barnett, B.C; Williams, G.R.; Cao, X.D.; Islam, M.N.; Malo, B; Hill, K.O.; Chowdhury, D.Q.: Experimental demonstration of a low-latency fiber soliton logic gate, IEEE J. of Lightwave Technol., vol 14.pp 1768–1775, 1996

    Article  Google Scholar 

  88. Saxena, S.; Wai, P.K.A.; Menyuk, C.R.; Chbat, M.W.: Analysis of a soliton-based logic module for a ring network, IEEE J. of Lightwave Technol., vol 14,pp 1776–1785, 1996

    Article  Google Scholar 

  89. Gibbs, H.M.: Optical Bistability: Controlling light by light, Academic Press, NewYork

    Google Scholar 

  90. Kawaguchi, H.: Absorptive and dispersive bistability in semiconductor injection lasers, Opt. Quantum Electron., vol 19, pp S1–S36, 1987

    Article  Google Scholar 

  91. Kawaguchi, H.: Bistability and Nonlinearities in Laser diodes, Norwood,MA: Artech House (1994)

    Google Scholar 

  92. Kuhlow, B.: Optische Computer, Mikro Elektronik, Bd6, pp 8–15, 1992

    Google Scholar 

  93. Ellis, A.D.; Smith, K.; Patrick, D.M.: All optical clock recovery at bit rates up to 40 Gbit/s, Electron. Lett., vol 29, pp 1323–1224, 1993

    Article  Google Scholar 

  94. Ludwig, R.; Ehrhardt, A.; Pieper, W.; Jahn, E.; Agrawal, N.; Ehrke, H.J.; Küller J.; Weber, H.G.: 40 Gbit/s demultiplexing experiment with 10 GHz all-optical clock recovery using a modelocked semiconductor laser, Electron. Lett.,vol 32, pp 327–339, 1996

    Article  Google Scholar 

  95. Ludwig, R.; Diez, S.; Ehrhardt, A.; Küller, L.; Pieper, W.; Weber, H.G.: A tunable femtosecond modelocked semiconductor laser for applications in OTDM systems, IEICE Trans. Electron., vol E81-C, pp 140–145, 1998

    Google Scholar 

  96. Sartorius, R; Bornholdt, C; Brox, O.; Ehrke, H.J.; Hoffmann, D.; Ludwig, R.; Möhrle, M.: All-optical clock recovery module based on self-pulsating DFB laser, Electron. Lett., vol 34, p 1664, 1998

    Article  Google Scholar 

  97. Kawanishi, S.; Saruwatari, M.: 10 GHz timing extraction from randomly modulated optical pulses using phase-locked loop with traveling-wave laser-diode optical amplifier using optical gain modulator, Electron. Lett., vol 28, pp 510–511, 1992

    Article  Google Scholar 

  98. Kamatani, O.; Kawanishi, S.; Saruwatari, M.: Prescaled 6.3 GHz clock recovery from 50 Gbit/s TDM optical signal with 50 GHz phase lock loop using four-wave-mixing in a traveling-wave laser diode optical amplifier, Electron. Lett., vol 30, pp 807–809, 1994

    Article  Google Scholar 

  99. Kamatani, O.; Kawanishi, S.: Prescaled timing extraction from 400 Gbit/s optical signal using a phase lock loop based on four-wave mixing in a laser diode amplifier, IEEE Photon. Technol. Lett., vol 8, pp 1094–1096, 1996

    Article  Google Scholar 

  100. Kawanishi, S.; Takara, H.; Morioka, T.; Kamatani, O.; Saruwatari, M.: 200 Gbit/s,100km time-division multiplexed optical transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing, Electron. Lett., vol 31, pp 816–817, 1995

    Article  Google Scholar 

  101. Jinno, M.; Abe, M.: All-optical regenerator based on nonlinear fiber Sagnac interferometer, Electron. Lett., vol 28, pp 1350–1352, 1992

    Article  Google Scholar 

  102. Jinno, M.: All-optical signal regularizing/regeneration using a non-linear fiber Sagnac interferometer switch with signal-clock walk-off, IEEE J. of Lightwave Technol., vol 12,pp 1648–1659, 1994

    Article  Google Scholar 

  103. Lucek, J.K.: Smith, K.: All-optical signal regenerator, Opt. Lett., vol 18, pp 1226–1228, 1993

    Article  Google Scholar 

  104. Pender, W.A.; Widdowson, T.; Ellis, A.D.: Error-free operation of a 40 Gbit/s all-optical regenerator, Electron. Lett., vol 32, pp 567–569, 1996

    Article  Google Scholar 

  105. Pieper, W.; Weich, K.; Ludwig, R.; Patzak, E.; Weber, H.G.: All-optical polarization and wavelength independent 3R signal regenerator, Electron. Lett., vol 32, pp 1316–1318, 1996

    Article  Google Scholar 

  106. Bigo, S.; Leclerc, O.; Desurvire, E.: All-optical fiber signal processing and regeneration for solition communications, IEEE J. of Selected Topics in Quantum Electron., vol 3, pp 1208–1223, 1997

    Article  Google Scholar 

  107. Shen, Y.: The Principles of Nonlinear Optics, John Wiley & Sons,Inc., New York, USA (1984)

    Google Scholar 

  108. Watanabe, S.; Chikama, T.; Ishikawa, G.; Terahara, T.; Kuwahara, H.: Compensation of Pulse Shape Distortion Due to Chromatic Dispersion and Kerr Effect by Optical Phase Conjugation, IEEE Photon. Technol. Lett., vol 5, pp 1241–1243, 1993

    Article  Google Scholar 

  109. Pieper, W.; Kurtzke, C; Schnabel, R.; Breuer, D.; Ludwig, R.; Petermann, K.; Weber, H.G.: Nonlinearity insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier, Electron. Lett., vol 30, pp 724–726, 1994

    Article  Google Scholar 

  110. Zhang, X.; Ebskamp, F.; Jørgensen, R: Long-Distance Transmission Over Standard Fiber by Use of Mid-Way Phase Conjugation, IEEE Photon. Technol. Lett., vol 7, pp 819–821, 1995

    Article  Google Scholar 

  111. Feiste, U; Ludwig, R.; Dietrich, E.; Diez, S.; Ehrke, H.J.; Razic, Dz.; Weber, H.G.: 40Gbit/s transmission over 434km standard fibre using polarization independent mid-span spectral inversion, Electron. Lett., vol 34, pp 2044–2045, 1998

    Article  Google Scholar 

  112. Feiste, U; Ludwig, R.; Schmidt, C; Dietrich, E.; Diez, S.; Ehrke, H.J.; Patzak, E.; Weber, H.G.; Merker, T.: 80 Gbit/s Transmission over 106-km Standard-Fiber Using Optical Phase Conjugation in a Sagnac Interferometer, IEEE Photon. Technol. Lett., vol 11, pp 1063–1065, 1999

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weber, H.G. (2002). Nichtlineare Optik und optische Signalverarbeitung. In: Voges, E., Petermann, K. (eds) Optische Kommunikationstechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56395-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56395-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63134-4

  • Online ISBN: 978-3-642-56395-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics