Skip to main content

Faseroptische Komponenten

  • Chapter
Optische Kommunikationstechnik
  • 526 Accesses

Zusammenfassung

Unter „Faseroptischen Komponenten” werden solche verstanden, bei denen die Glasfaser selbst oder diese aufgrund spezieller Bearbeitung (Modifikation) eine zentrale Funktionalität ausübt.

Allgemeine Literatur

Grau G. und Freude W., Optische Nachrichtentechnik, Springer Verlag, 1991. — Tosco F. (Hrsg.), Fiber Optic Communications Handbook, TAB Professional and Reference Books,Blue Ridge Summit, PA, USA, 1990. — Unger, H.-G., Optische Nachrichtentechnik TeilII, Hüthig Buch Verlag, Heidelberg, 1992

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. Lipson, J. and Harvey, G.T.: Low-loss wavelength division multiplexing (WDM) devices for single-mode systems. Journal of Lightwave Technology 1 (1983) 387–390

    Article  Google Scholar 

  2. Takagi, A. et al.: Wavelength characteristics of (2x2) optical channel-type directional couplers with symmetric and nonsymmetric coupling structures. Journal of Lightwave Technology 10 (1992) 735–746

    Article  Google Scholar 

  3. Mortimore, D.B.: Wavelength-flattened fused couplers. Electronics Letters 21Electronics Letters (1985) 742–743

    Article  Google Scholar 

  4. OPLINK,Produkt Katalog 2000

    Google Scholar 

  5. Morishita, K. and Tahara, T.: Wavelength-insensitive couplers in form of all-fibre Mach-Zehnder interferometer. Electronics Letters 27 (1991) 1200–1202

    Article  Google Scholar 

  6. TECOS Telecommunications Systems, Produkt Katalog

    Google Scholar 

  7. Mortimore, D.B. and Arkwright, J. W.: Monolithic wavelength-flattened 1x 7 single-mode fused coupler. Electronics Letters 25 (1989) 606–607

    Article  Google Scholar 

  8. Nosu, K, and Watanabe, R.: Slab waveguide star coupler for multimode optical fibres. Electronics Letters 16 (1980) 608–609

    Article  Google Scholar 

  9. Zengerle, R. and Leminger, O.: Narrow-band wavelength-selective directional couplers made of dissimilar single-mode fibres. Journal of Lightwave Technology 5 (1987) 1196–1198

    Article  Google Scholar 

  10. Leminger, O., Zengerle, R.: Bandwidth of directional-coupler wavelength filters made of dissimilar optical fibres. Electronics Letters 23 (1987) 241–242

    Article  Google Scholar 

  11. Leminger, O. and Zengerle, R.: Narrow-band directional couplers made of dissimilar single-mode fibers with different cladding refractive indexes. Journal of Lightwave Technology 8 (1990) 1289–1291

    Article  Google Scholar 

  12. Archambault, J.L. et al.: Grating-frustrated coupler: a novel channel-dropping filter in single-mode optical fiber. Optics Letters 19 (1994) 180–182

    Article  Google Scholar 

  13. Whalen, M. S. et al.: Demonstration of a narrowband Bragg-reflect ion filter in a single-mode fibre directional coupler. Electronics Letters 22 (1986) 681–682

    Article  Google Scholar 

  14. Baumann, L. et al.: Compact all-fiber add-drop multiplexer using fiber Bragg gratings. IEEE Photon. Technol. Lett 8 (1997)

    Google Scholar 

  15. Zhang, F. and Lit, J.W.Y.: Direct-coupling single-mode fiber ring resonator. J. Opt. Soc. Am. A 5 (1988) 1347–1355

    Article  Google Scholar 

  16. Bao, Y. et al.: High-speed liquid crystal fiber Fabry-Perot tunable filter. OFC96, proceedings 90–91

    Google Scholar 

  17. McCallion, K. et al.: Tunable in-line fiber-optic bandpass filter. Optics Letters 19 (1994) 542–544

    Article  Google Scholar 

  18. Sorin, W.V. and Shaw, H. J.: A single-mode fiber evanescent grating reflector. Journal of Lightwave Technology 3 (1985) 1041–1043

    Article  Google Scholar 

  19. Ortega, B.and Dong, L.: Highly tunable mismatched twin-core fibre filters. ECOC98 Proceedings 31–32

    Google Scholar 

  20. Atkins, G.R. et al.: UV tuning of twin-core fiber demultiplexers. OFC 95 Proceedings 161–162

    Google Scholar 

  21. Ahmad, S.-J.and McKeeman, J.C.:All-fiber spectral filters with nonperiodic bandpass characteristics and high extinction ratios in the wavelength range 0.8 μm ‘λ ‘1.6 μm. Journal of Lightwave Technology 9 (1991) 959–963

    Article  Google Scholar 

  22. Tjugiarto, T. et al.: Bandpass filtering effect in tapered asymmetrical twin-core optic al fibres. Electronics Letters 29 (1993) 1077–1078

    Article  Google Scholar 

  23. Bilodeau, F. et al.: High-return-loss narrowband all-fiber bandpass Bragg transmission filter. IEEE Photo TechnoL. Lett. 6 (1994) 80–82

    Article  Google Scholar 

  24. Mizrahi, V. et al.: Four channel fibre grating demultiplexer. Electronics Letters 30 (1994) 780–781

    Article  Google Scholar 

  25. Huang, C.et al.: Ultra-low loss temperature-insensitive 16 channel 100-GHz dense wavelength division multiplexers based on cascaded all-fiber unbalanced Mach-Zehnder structure. OFC 99 proceedings paper TuH2 79–81

    Google Scholar 

  26. Johnson, D.C. et al.: New design concept for a narrowband wavelength-selective optical tap and combiner. Electronics Letters 23 (1987) 668–669

    Article  Google Scholar 

  27. Bakhti, F. et al.: Grating-assisted Mach-Zehnder OADM using cladding-photosensitive fibre for cladding mode suppression. OFC 99 proceedings paper TuN2 193–195

    Google Scholar 

  28. Park, H.S. et al.: All fiber add-drop multiplexer using a tilted fiber Bragg grating and mode-selective couplers. OFC 99 proceedings paper TuH6 91–93

    Google Scholar 

  29. Hoffmann, M. et al.: All-silicon bistable micromechanical fibre switches. Electronics Letters 34 (1998) 207–208.

    Article  Google Scholar 

  30. Lin, L. Y. et al.: High-density micromachined polygon optical crossconnects exploiting network connection-symmetry. IEEE Photonics Technology Letters 10 (1998) 1425–1427

    Article  Google Scholar 

  31. Hill, R.A. et al.: Polymeric in-line fiber modulator using novel processing techniques. OFC 96 Proceedings 166–167

    Google Scholar 

  32. Walker, N.G. and Walker, G. R.: Polarization control for coherent communications. Journal of Lightwave Technology 8 (1990) 438–458

    Article  Google Scholar 

  33. Johnstone, W. et al.: Surface plasmon polaritons in thin metal films and their role in fibre optic polarizing devices. Journal of Lightwave Technology 8 (1990) 538–544

    Article  Google Scholar 

  34. Zervas, M.N. and Giles, I.P: Optical Fibre Surface-Plasmon-Wave Polarizers with Enhanced Performance. Electron. Lett. 25 (1989) 321–323

    Article  Google Scholar 

  35. Creaney, S. et al.: Low loss fibre optic polaris+ers using differential coupling to dielectric waveguide overlays. Electronics Letters 30 (1994) 349–351

    Article  Google Scholar 

  36. Zengerle, R. et al.: Large-spot laser diodes with stable carrier frequency by an external fiber grating. IPR 96 paper IThD3

    Google Scholar 

  37. Zengerle, R. et al.: Mode-locking in large-spot laser diodes with external fiber grating. Optics for Science and New Technology, SPIE Vol. 2778 (1996) 1080–1081

    Google Scholar 

  38. Knight, J.C. et al.: Properties of photonic crystal fiber and the effective index model. J.Opt. Soc.Am.A 15 (1998) 748–752

    Article  Google Scholar 

  39. Bjarklev, A. et al.: Dispersion properties of photonic crystal fibres. ECOC98, Proceedings 135–136

    Google Scholar 

  40. Birks, T.A. et al.: Single material fibres for dispersion compensation. OFC 99 proceedings paper FG2 108–110

    Google Scholar 

  41. SHOWA ELECTRIC WIRE & CABLE, Produkt Katalog

    Google Scholar 

  42. Riant, I. et al.: Gain equalization with optimized slanted Bragg grating on adapted fibre for multichannel long-haul submarine transmission. OFC 99 paper ThJ6 147–149

    Google Scholar 

  43. Love, J.D. et al.: Tapered single-mode fibres and devices. IEE Proceedings-J 138 (1991) 343–354

    Google Scholar 

  44. Goldberg, J. and Koplow, J.: High power side-pumped Er/Yb doped fiber amplifier. OFC 99 proceedings paperWA7 19–21

    Google Scholar 

  45. Mahlke, G. und Gössing, P.: Lichtwellenleiterkabel, Publicis MCD Verlag, 1998

    Google Scholar 

  46. Irie, T. et al: Fiber-integrated isolators with high performance. OFC 96 Proceedings 53–54

    Google Scholar 

Faseroptische Gitter

  1. Meltz, G.; Morey, W. W.; Glenn, W.H.: Formation of Bragg gratings in optical fibers by a transverse holographic method. In: Opt. Lett. 14 (1989), S. 823–825

    Article  Google Scholar 

  2. Kashyap, R.: Fiber Bragg Gratings. Academic Press, 1999

    Google Scholar 

  3. Campbell, R.J.; Kashyab, R.: The properties and applications of photosensitive germanosilicate fiber. In: Int. J.Optoelectron. 9 (1994), S. 33–57

    Google Scholar 

  4. Russell, P.St.J.; Archambault, J.-L.; Reekie, L.: Fibre gratings. In: Physics World (1993), S. 41–46

    Google Scholar 

  5. Bennion, I. et al.: UV-written in-fibre Bragg-gratings. In: Opt. Quantum Electron. 28 (1996), S. 93–135

    Article  Google Scholar 

  6. Hill, K.H.; Meltz, G.: Fiber Bragg grating technology: Fundamentals and overview. In: J. Lightwave Technol. 15 (1997), S. 1263–1276

    Article  Google Scholar 

  7. Hand, D.P.; Russell, P.St.J.: Photoinduced refractive-index changes in germanosilicate fibers. In: Opt. Lett. 15 (1990),S. 102–104

    Article  Google Scholar 

  8. Douay, M.: Densification involved in UV-Based photosensitivity of silica glasses and optical fibers. In: J. Lightwave Technol. 15 (1997), S. 1329–1342

    Article  Google Scholar 

  9. Lemaire, P.J. et al.: High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity in GeO2 doped optical fibers. In: Electron. Lett. 29 (1993), S. 1191–1193

    Article  Google Scholar 

  10. Hill, K.O. et al.: Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. In: Appl. Phsy. Lett. 32 (1978), S. 647–649

    Article  Google Scholar 

  11. Loh, W.H. et al.: Complex grating structures with uniform phase masks based on the moving fiberscanning beam technique. In: Opt. Lett. 20 (1995), S. 2051–2053

    Article  Google Scholar 

  12. Erdogan, T.: Fiber grating spectra. In: J. Lightwave Technol. 15 (1997), S. 1277–1294

    Article  Google Scholar 

  13. Yariv, A.: Optical Electronics in Modern Communications. Oxford University Press, 1997

    Google Scholar 

  14. Unger, H.-G.: Elektromagnetische Theorie für die Hochfrequenztechnik. Bd.2. Heidelberg: Hüthig Verlag, 1981

    Google Scholar 

  15. Brinkmeyer, E.: Simple algorithm for reconstruction fiber gratings from reflectometric data. In: Opt. Lett. (1995), S. 810–812

    Google Scholar 

  16. Poladian, L.: Analysis and modelling of group delay ripple in Bragggratings. In: OSA Technical Digest: Conference on Bragg Gratings, Photosensitivity and Polingin Glass Waveguides, 1999, S. 258–260

    Google Scholar 

  17. Erdogan, T.; Sipe, J.E.:Tilted fiber phase gratings. In: J. Opt.Soc.Amer.A 13(1996), S. 296–313

    Article  Google Scholar 

  18. Johlen, D.; Klose, P.; Ewald, A.; Brinkmeyer, E.: Non-reflecting narrow-band fiber optical Fabry-Perot transmission filter. In:OSA Technical Digest: Conference on Bragg Gratings, Photosensitivityand Poling in Glas sFibers and Waveguides: Application and Fundamentals, 1997, S. 42–44

    Google Scholar 

  19. Vengsarkar, M. et al.: Long Period fiber gratings as band-rejection filters. In: J. Lightwave Technol. 14 (1996), S. 58–65

    Article  Google Scholar 

  20. Giles, C.R. et al.: Lightwave applications of fiber Bragg gratings. In: J. Lightwave Technol. 15 (1997), S. 1391–1404

    Article  Google Scholar 

  21. Johlen, D.; Klose, P.; Renner, H.; Brinkmeyer, E.: Narrow-band-mode converting Fabry-Perot output coupler for fiber lasers. In: Proc. Conf. Opt. FiberComm. (OFC), San Jose, 1998. -paper FA4

    Google Scholar 

  22. Eggleton, B.J. et al.: Long period superstructure Bragg gratings in optical fibers. In: Electron. Lett. 30 (1994), S. 1620–1622

    Article  Google Scholar 

  23. Bilodeau, F. et al.: High-return-loss narrow-band a-fiber bandpass Braggtransmission Filter.In: IEEE Photon. Technol. Lett. 6 (1994), S. 80–82

    Article  Google Scholar 

  24. Archambault, J.L. et al.: Grating-frustated coupler: a novel channel-dropping filter in single-mode optical fiber. In: Opt. Lett. 19 (1994), Nr. 3, S. 180–183

    Article  Google Scholar 

  25. Ouellette, F.: Dispersion cancellationusing inearlychirped Bragg grating filtersin optical waveguides. In: Opt. Lett. 12 (1987), S. 847–849

    Article  Google Scholar 

  26. Archambault, J.-L.; Grubb, S.G.: Fiber gratings in lasers and amplifiers. In: J. Lightwave Technol. 15 (1997), S. 1378–1390

    Article  Google Scholar 

  27. Kersey, A.D.: Fiber grating sensors. In: J.Lightwave Technol. 15 (1997),S. 1442–1463

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zengerle, R., Brinkmeyer, E. (2002). Faseroptische Komponenten. In: Voges, E., Petermann, K. (eds) Optische Kommunikationstechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56395-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56395-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63134-4

  • Online ISBN: 978-3-642-56395-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics