Skip to main content

Meteorology — LEO (Low Earth Orbit) Missions

  • Chapter
Book cover Observation of the Earth and Its Environment
  • 378 Accesses

Abstract

Background:1155),1156),1157) DMSP is the meteorological long-term program of the US Department of Defense (DoD) which originated in the mid-1960s with the objective to collect and disseminate worldwide cloud cover data on a daily basis. DMSP was originally known as DSAP (Defense System Applications Program) and as DAPP (Defense Acquisition and Processing Program).1158) 1159)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.D. Meyer, “DMSP: Review of its Impact, in Monitoring Earth’s Ocean, Land, and Atmosphere from Space,” Volume 97, Progress in Astronautics and Aeronautics, AIAA, 1985, pp. 131–147

    Google Scholar 

  2. S. Ferry, “The Defense Meteorological Satellite System Sensors: An Historical Overview, ” May 1989

    Google Scholar 

  3. R. B. Gomez, M. C. Colton, D. Boucher, F. P Kelly, “The Defense Meteorological Satellite Program (DMSP), ” ISSSR, Maui, HI, Nov. 16–20, 1992

    Google Scholar 

  4. W. D. Meyer, “The Defense Meteorological Satellite Program: A Review of its Impact, ” Monitoring Earth’s Ocean, Land, and Atmosphere from Space — Sensors, Systems, and Applications, Progress in Astronautics and Aeronautics, AiAA, Volume 97, 1985, pp. 129–149

    Google Scholar 

  5. http://www.laafb.af.mil/SMC/SESS/

  6. R. Massom, “Satellite Remote Sensing of Polar Regions, ” Applications, Limitations and Data Availability, Belhaven Press, London

    Google Scholar 

  7. J. Goyette, L. Belsma, J. Bohlson, D. Glackin, “Defense Meteorological Satellite Program capabilities through the end of this century and requirements for the converged DMSP NOAA Systems, ” European Symposium on Satellite Remote Sensing II, Paris, France, Sept. 25–28, 1995, published in SPIE Vol. 2578

    Google Scholar 

  8. J. W. Sherman, “The Near-Term Suite of Satellite Sensors to Support Developing Countries’ Climate and Global Change Photograms, ” Proceedings of the Twenty-Fourth International Symposium on Remote Sensing of the Environment, ERIM Ann Arbor ML, Volume 1, 27–31 May 1991, pp. 27–28

    Google Scholar 

  9. J. P. Hollinger, J. L. Pierce, G. A. Poe, “SSM/I Instrument Evaluation, ” IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No. 5, pp. 781–790, 1990

    Article  Google Scholar 

  10. The rotating antenna sweeps the surface in two alternating modes — one in which all four frequencies are recorded, and another in which only 85 GHz data are recorded. The use of a single antenna results in different ground resolutions for each frequency.

    Google Scholar 

  11. http://www-vsbp.plh.af.mil/projects/dmsp/ssm12ins.html

  12. Information of all Block 5D-3 sensors and update of Table 330 provided by Major J. Sorlin-Davis, Dept. of USAF, The Pentagon

    Google Scholar 

  13. http://tipweb.nrl.navy.mil/Projects/ssuli/ssuli.html

  14. L. J. Paxton, et al., “Special Sensor Ultraviolet Spectrographic Imager (SSUSI): An Instrument Description, ” JHU/APL paper

    Google Scholar 

  15. http://sd-www.jhuapl.edu/SSUSI/

  16. “Defense Meteorological Satellite Program, Visible and Infrared Imagery Collection, ” NOAA-NSIDC, Feb. ’84

    Google Scholar 

  17. “Data Management Plan for the Archive of DMSP Digital Data at NGDC, ” April 28, 1992, Draft; Courtesy of W. Kroehl, NGDC

    Google Scholar 

  18. J. Holloinger, “DMSP Special Sensor Microwave/Imager Calibration/Validation, ” Final Report, Vol. I and II, NRL, 1989

    Google Scholar 

  19. D. Moore, L. Zhao, et al., “The new NOAA Microwave Surface and Precipitation Product System, ” Proceedings of the EUMETSAT Meteorological Satellite Data User’s Conference, Copenhagen, Denmark, Sept. 6–10, 1999, pp. 325–329

    Google Scholar 

  20. Courtesy G. Scharfen, NOAA/NESDIS/NSIDC

    Google Scholar 

  21. A. Ratier, “The EUMETSAT Polar System, ” Proceedings of the 1999 EUMETSAT Meteorological Satellite User’s Conference, Copenhagen, Denmark, Sept. 6–10, 1999, pp.3–10

    Google Scholar 

  22. P. G. Edwards, D. Pawlak, “MetOp: The Space Segment for EUMETSAT’s Polar System, ” ESA Bulletin, No 102, May 2000, pp. 7–18

    Google Scholar 

  23. D. Pawlak, C. Bousquet, “MetOp: the space segment of the EUMETSAT Polar System, ” Proceedings of the 2000 EUMETSAT Satellite Data Users’ Conference, Bologna, Italy, May 29-June 2, 2000, pp. 209–213

    Google Scholar 

  24. R. V. Gelsthorpe, E. Schied, J. J. W. Wilson, “ASCAT — MetOp’s Advanced Scatterometer, ” ESA Bulletin, No 102, May 2000, pp. 19–27

    Google Scholar 

  25. “ASCAT Advanced Scatterometer, ” ESA brochure

    Google Scholar 

  26. F. Rostan, M. Kuntz, S. Schütz, “The Advanced Scatterometer (ASCAT) Ground Processing Prototype, ” Proceedings of IGARSS’99, Vol. I, Hamburg, June 28 — July 2, 1999, pp. 224–226

    Google Scholar 

  27. H. Ebner, H. R. Schulte, H. Hölzl, D. Miller, P. Hans, “ASCAT — Advanced Wind Scatterometer, ” IGARSS’92, Volume I, pp. 435–439

    Google Scholar 

  28. F. Rostan, M. Kuntz, S. Schütz, “The Advanced Scatterometer (ASCAT) Ground Processing Prototype, ” IGARSS’99 Proceedings, Hamburg, June 28-July 2, 1999, Vol; I, pp. 224–226

    Google Scholar 

  29. A. Stoffelen, “Error Modeling and Calibration; towards the truesurface wind speed, ” Journal of Geophysical Research, Vol. 103, 1998, pp. 7755–7766

    Article  Google Scholar 

  30. F. Rostan, “The Calibration of the MetOp/Advanced Scatterometer (ASCAT), ” IEEE/IGARSS 2000, Honolulu, HI, July 24–28, 2000

    Google Scholar 

  31. C. J. Bushell, et al., “Humidity Sounders for the 21st Century/’Proceedings of the EUMETSAT Meteorological Satellite User’s Conference, Copenhagen, Denmark, Sept 6–10, 1999, pp.77–84

    Google Scholar 

  32. G. Shaw, C. J. Bushell, “The Radiometric Performance of the Microwave Humidity Sounder, ” Proceedings of the EUMETSAT Meteorological Satellite User’s Conference, Copenhagen, Denmark, Sept. 6–10, 1999, pp. 135–139

    Google Scholar 

  33. D. Simeoni, C. Singer, G. Chalon, “Infrared Atmospheric Sounding Interferometer, ” IAF-96-B3.P212, Acta Astronautica, Vol. 40, No. 2–8, pp. 113–118, 1997

    Article  Google Scholar 

  34. “Improved Atmospheric Sounding Infrared, ” ASI/CNES brochure, April 1991

    Google Scholar 

  35. http://www-projet.cst.cnes.fr:8060/IASI/index.html

  36. J. Callies, E. Corpaccioli, M. Eisinger, A. Hahne, A. Lefebvre, “GOME-2 — MetOp’s Second-Generation Sensor for Operational Ozone Monitoring, ” ESA Bulletin, No 102, May 2000, pp. 28–36

    Google Scholar 

  37. W. G. Melbourne, et al., “The application of spaceborne GPS to limb sounding and global monitoring, ” JPL publication 94–18, 1994

    Google Scholar 

  38. M. Loiselet, N. Stricker, Y. Menard, J.-P. Luntama, “GRAS — MetOp’s GPS-based Atmospheric Sounder, ” ESA Bulletin, No 102, May 2000, pp. 38–44

    Google Scholar 

  39. M. Loiselet, N. Stricker, Y. Menard, J.-P. Luntama, “GNSS Radio Occultation Receiver for Atmospheric Sounding, ” Proceedings of the 2000 EUMETSAT Meteorological Satellite Data Users’ Conference, Bologna, Italy, May 29, June 2, 2000, pp. 192–200

    Google Scholar 

  40. G. Bergeton Larsen, “Atmospheric Products from the GRAS Meteorology SAF (Satellite Application Facility), ” Proceedings of the 2000 EUMETSAT Meteorological Satellite Data Users’ Conference, Bologna, Italy, May 29, June 2, 2000, pp. 243–249

    Google Scholar 

  41. Note: At the start of the GRAS project, the initial goal was to use both the GPS and the GLONASS constellations. However, during the course of the Metop phase B, GLONASS capabilities have been descoped resulting in an implementation which considers only the GPS tracking capabilities.

    Google Scholar 

  42. Note: Although the original acronym for ‘Search and Rescue’ is ‘SAR’ in the context of NOAA (or MetOp) missions, it was changed in this book consistently to ‘S&R’ in order to distinguish it from the other widely-used meaning of SAR, namely ‘Synthetic Aperture Radar, ’ a sensor type. A consequence is the use of’S&RSAT’ (instead of SARSAT), to use S&RP instead of SARP, as well as to use S&RP-3 instead of SARP-3

    Google Scholar 

  43. W. Zhang, “Meteorological satellite program of China, ” Proceedings of SPIE, Vol. 3501, Optical Remote Sensing of the Atmosphere and Clouds, Sept. 15–17, 1998, Beijing, China, pp. 12–22

    Google Scholar 

  44. W. Zhang, “Meteorological satellite program of China, ” Proceedings of the Asian Conference on Remote Sensing, HongKong, China, Nov. 22–25, 1999, pp. 299–305

    Google Scholar 

  45. H. Gong, Q. Zheng, W. Wang, “The Improvement of the Detecting Property and the Performance of the Very High Resolution Scanning Radiometer on FY-1B Meteorological Satellite, ” AAS 91–658, pp. 497–503

    Google Scholar 

  46. SITP internal paper written by D. Kuang, H. Gong, and Q. Zheng

    Google Scholar 

  47. Q. B. Zheng, X. R. Xue, “Optical Design of the Remote Sensing Instrument for FY-1 Meteorological Satellite, ” Chinese Journal of Infrared & Millimeter Waves, Volume 9, Number 2, 1989

    Google Scholar 

  48. ‘The Data Format and the calibration Parameters of FY-1 Meteorological Satellite, ’ Satellite Meteorology Center, SMA

    Google Scholar 

  49. Ch. Weng, et al, “Remote Sensor on the FY-1 Satellite”, Paper IAF-92–099, 43rd Congress of the International Astronautical Federation, August-September 1992

    Google Scholar 

  50. X. Jianping, W. Caiying, “The Chinese Meteorological Satellite Programs, ” Proceedings of the 2000 EUMETSAT Meteorological Satellite Data Users’ Conference, Bologna, Italy, May 29 — June 2, 2000, pp. 168–173

    Google Scholar 

  51. Gong Huixing, Zheng Qinbo, Weng, Chuijin, “The FY-1C Meteorological Satellite and its Remote Sensor, ” Proceedings of the Asian Conference on Remote Sensing, HongKong, Nov. 22–25, 1999, pp. 1253–1257

    Google Scholar 

  52. Y. Liu, W. Zhang, Y. Zongdong, “FY-1C Polar Orbiting Meteorological Satellite of China: Satellite Ground System and Preliminary Applications, ” Proceedings of the Asian Conference on Remote Sensing, HongKong, Nov. 22–25, 1999, pp. 1261–1267

    Google Scholar 

  53. Information provided by Wang Xinmin of the Shanghai Institute of Technical Physics, Shanghai

    Google Scholar 

  54. http://www.cma.gov.cn/fy2/chnsmc.htm

  55. T. Pirard, “Earth Observation Technology”, Spaceflight, January 1995, pp. 20–21

    Google Scholar 

  56. “The Cambridge Encyclopedia of Space, ” Cambridge University Press 1990, p. 235

    Google Scholar 

  57. The original text was reviewed by Y. V. Trifonow of VNIIEM, Moscow

    Google Scholar 

  58. COSPAR-90-Paper by A. Karpov, USSR State Committee for Hydrometeorology, Moscow. Title of paper: “Hydrometeorological, Oceanographic and Earth-Resources Satellite Systems operated by the USSR.”

    Google Scholar 

  59. V. P. Vassiliev, L. I. Gusev, V. D. Shadgorodsky, J. J. Degnan, “Experimental Verification of the Fizeau Influence on the Reflected Beam Direction in Satellite Laser Ranging, ” Ninth International Proceedings on Laser Ranging Instrumentation, 1994.

    Google Scholar 

  60. “Atlas zur Interpretation von kosmischen Scanneraufnahmen, Multispektralsystem Fragment, Methodik und Ergebnisse, ” Akademie-Verlag, Berlin, Nauka Verlag, Moscow, 1989

    Google Scholar 

  61. Information provided by Ian Ziman of IKI, Moscow

    Google Scholar 

  62. A. S. Selivanov, Y. M. Tuchin, M. K. Naraeva, B. I. Nosov, “Experimental Satellite System for Earth Monitoring, ” Issledovanie Zemli iz Kosmosa, W 5, 1981

    Google Scholar 

  63. Y. V. Trifonov, “Meteor-3 space system for hydrometeorological observation, ” VNIIEM, Moscow, 1991

    Google Scholar 

  64. ‘Soviets to Launch U.S. Ozone Mapper,’ Space News Aug. 5–18, 1991, p. 14

    Google Scholar 

  65. ‘TOMS Arrives Successfully in Space,’ Space News Aug. 19–25, 1991, p. 2

    Google Scholar 

  66. “TOMS Mission Declared Over by NASA Officials, ” Space News, February 20–26, 1995, p. 11

    Google Scholar 

  67. http://scarab.cnes.fr:8020/

  68. J. L. Monge, R. Kandel, L. A. Pakhomov, B. Bauche, “ScaRaB Earth radiation budget scanning radiometer, ” SPIE, Vol. 1490, ‘Future European and Japanese Remote Sensing Programs, ’ 1991

    Google Scholar 

  69. J. Mueller, et al., “Ground Characterization of the Scanner for Radiation Budget (ScaRaB) Flight Model 1, ” Journal of Atmospheric and Oceanic Technology, Vol. 14, No 4, pp.802–813, 1997.

    Article  Google Scholar 

  70. Courtesy of B. S. Zhukov (IKI RAN), Y. V. Trifonov and Y. V. Dubrovinsky (VNIIEM), Moscow

    Google Scholar 

  71. Meteor 2–22 was launched in honor of A. G. Iosiphyan, the founder and first director of VNIIEM and the designer of the Meteor-1, Meteor-2, and Meteor-Priroda satellite series

    Google Scholar 

  72. A. I. Bedritsky, V. V. Asmus, A. B. Uspensky, “Current and Future Russian Meteorological Satellite Systems and their Applications, ” Proceedings of the EUMETSAT Meteorological Satellite Data User’s Conference, Copenhagen, Denmark, Sept. 6–10, 1999, pp. 17–23

    Google Scholar 

  73. L. Mauldin, R. Salikhov, S. Habib, A. Vladimirov, et al., “Meteor-3M/Stratospheric Aerosol and Gas Experiment (SAGE-III) Jointly Sponsored by the National Aeronautics and Space Administration and the Russian Space agency, ” SPIE International Asia-Pacific Symposium, Sept. 14–17, 1998, Beijing, China

    Google Scholar 

  74. Information provided by Vladimir Kharitonov of VNIIEM, Moscow

    Google Scholar 

  75. A. M. Larar, “Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, ” Proceedings of SPIE, Vol. 3756, July 19–21, 1999, Denver, CO, pp. 102–179

    Google Scholar 

  76. W. P. Chu, R. Veiga, “Overview of the SAGE-III Experiment, ” Proceedings of SPIE, Vol. 3756, July 19–21, 1999, Denver, CO, pp. 102–109

    Google Scholar 

  77. W. P. Chu, R. Veiga, “SAGE-III / EOS, ” Proceedings of SPIE, Vol. 3501, Sept. 15–17, 1998, Beijing, pp. 52–60

    Google Scholar 

  78. R. E. Veiga, W. P. Chu, A. J. Ray, “The SAGE-III Instrument and Level-1 Data Corrections, ” ESAMS’99 European Symposium on Atmospheric Measurements from Space, ESTEC, Noordwijk, The Netherlands, Jan. 18–22, 1999

    Google Scholar 

  79. http://arbs8.larc.nasa.gov/sage3/

  80. Information provided by Raynor L. Taylor of NASA/GSFC

    Google Scholar 

  81. http://jointmission.gsfc.nasa.gov/

  82. R. E. Murphy, R. Taylor, et al., “The NPOESS Preparatory Project: Mission Concept and Status, ” IGARSS 2001, Sydney, Australia, July 9–13, 2001

    Google Scholar 

  83. http://npoesslib.ipo.noaa.gov/viirs_released_papers.htm

  84. C. P. Welsch, H. Swenson, S. A. Cota, F. DeLuccia, J. M. Haas, C. Schueler, R. M. Durham, J. E. Clement, P. E. Ardanuy, “VIIRS (Visible Infrared Imager Radiometer Suite): A Next-Generation Operational Environmental Sensor for NPOESS, IGARSS 2001, Sydney, Australia, July 9–13, 2001

    Google Scholar 

  85. http://www.ball.com/aerospace/npoess_cmis.html

  86. P. H. Graf, I. Becker, et al, “The Preliminary Design of the Ozone Mapping and Profiler Suite (OMPS), ” July 2000 as provided on: http://npoesslib.ipo.noaa.gov/omps_released_papers.htm

    Google Scholar 

  87. http://npoesslib.ipo.noaa.gov/Released_papers/OMPS_Flyer2.pdf

  88. Information provided by Peter Sinander of Saab Ericsson Space AB, Göteborg, Sweden

    Google Scholar 

  89. A description of TIROS-2 is presented in the Journal of the British Interplanetary Society, Vol. 19, Pages 386–409, 1963–64.

    Google Scholar 

  90. A. Schwalb, “The TIROS-N/NOAAA-G Satellite Series, ” NOAA Technical Memorandum NESS 95, March 1978

    Google Scholar 

  91. M. Mignogno, “NOAA Polar Program Plans for Continuous Satellite Coverage, ” Proceedings of the 1999 EU-METSAT Meteorological Satellite Data User’s Conference, Copenhagen, Denmark, Sept. 6–10, 1999, pp. 11–15

    Google Scholar 

  92. In NOAA terminology, TIP (TIROS Information Processor) data refers to low-rate instrument data multiplexed with satellite housekeeping data. It contains all environmental instrument information except that from the AVHRR and the AMSU.

    Google Scholar 

  93. CEOS Summary Report, WGD-10 Meeting, Annapolis MD, April 16–18, 1991

    Google Scholar 

  94. http://www2.ncdc.noaa.gov/docs/klm/html/c3/sec3–2.htm

  95. P. M. Taylor, B. A. Banks, “An overview of the NOAA/NESDIS data processing systems and derived products for NOAA-KLM, ” Earth System Monitor, Vol. 8, No. 4, June 1998, pp. 7–11

    Google Scholar 

  96. Information provided by G. A. Mandt of NOAA POES Program, “AVHRR/3 Instrument Technical Overview, ” March 15, 1995 of ITT A/CD

    Google Scholar 

  97. http://www2.ncdc.noaa.gov/docs/klm/html/c3/sec3–1.htm

  98. Note: The polarization angle is defined as the angle from horizontal polarization (i.e., electric field vector parallel to satellite track) where is the scan angle from nadir. In this table, the polarization angle is horizontal when the angle indicated is θ and vertical when 90–8

    Google Scholar 

  99. http://www2.ncdc.noaa.gov/docs/klm/html/c3/sec3–4.htm

  100. M. Mignogno, M Langevin, “Cooperation in Polar Orbiting Environmental Satellites: NOAA and EUMETSAT Joint Plans for the next Decade, ” Proceedings of Information for Sustainability, 27th International Symposium on Remote Sensing of Environment, Tromsoe, Norway, June 8–12, 1998, pp. 555–559

    Google Scholar 

  101. A. F. Durham, “Future Polar Satellite Program Plan for Global Environmental Observations, ” IAF 92–0083, 43rd Congress of the International Astronautical Federation, Aug. 28-Sept. 5, 1992 Washington, D. C.

    Google Scholar 

  102. Bruce H. Needham, “Instrumentation and Services for the NOAA Polar-Orbiting Operational Environmental Satellites (POES) in the 21st Century, ” NOAA/NESDIS, Office of System Development, Washington D.C., ’90

    Google Scholar 

  103. ”Pre-Phase-A Study of NOAAO, P, Q Spacecraft and Ground Segment LRPT and HRPT Data Handling and Transmission Subsystems” Draft Final Report, Oct. 16, 1990, Atlantic Research Corp. prepared for NASA/GSFC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kramer, H.J. (2002). Meteorology — LEO (Low Earth Orbit) Missions. In: Observation of the Earth and Its Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56294-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56294-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62688-3

  • Online ISBN: 978-3-642-56294-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics