Skip to main content
  • 368 Accesses

Abstract

An ESA Explorer mission, proposed in 1998, with the overall objective to obtain profiles of atmospheric parameters with occultation measurements using a constellation of six LEO microsatellites. The concept involves the systematic gathering of data over a five-year period. The profiles are used in such applications as climate modeling and climate prediction techniques to improve the understanding of the driving forces behind climate change and variability. The ACE science team is composed of researchers from the Meteorological Institutes in Denmark, Sweden, France and the United Kingdom. The ACE project is in phase A as of 2001.361) 362) 363) 364) 365)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. M. Veldman, K. Lundahl, “Atmospheric Climate Experiment ACE — a Constellation of Microsats for Atmospheric Sounding,” ISU International Symposium on Smaller Satellites: Bigger Business? May 21–23, 2001, Strasbourg, France

    Google Scholar 

  2. P. Hoeg, J. Guldberg, K. Lundahl, “Atmosphere Climate Experiment,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 343–346

    Google Scholar 

  3. K. Lundahl, S. Veldman, “Atmospheric Climate Experiment ACE,” Proceedings of the 51st International Astronautical Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000, IAF-00-B.2.08

    Google Scholar 

  4. http://www.ssc.se/ssd/msat/ace/ace.html

  5. S. Veldman, K. Lundahl, P. Hoeg, F. Hass, P. Sinander, “Atmospheric Climate Experiment ACE,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 95–98

    Google Scholar 

  6. Information provided by A. McLean of NASA/JPL

    Google Scholar 

  7. http://acrim.jpl.nasa.gov/mission/missionindex.html

  8. http://acrim.jpl.nasa.gov/

  9. P. Ingmann, J. Fuchs, J. Pailleux, A. Stoffelen, “The Atmospheric Dynamics Mission,” ESA Earth Observation Quarterly, No 66, July 2000, pp. 12–17

    Google Scholar 

  10. “Atmospheric Dynamics Mission,” ESA publication SP-1233 (4), July 1999

    Google Scholar 

  11. http://www.estec.esa.nl/explorer/

  12. F. Fabre, A. Heliere, et al., “Direct Detection Doppler Wind Lidar Prototype: Design and Preliminary Results,” Proceedings of the 2000 EUMETSAT Meteorological Satellite Data Users’ Conference, Bologna, Italy, May 29–June 2, 2000, pp. 239–242

    Google Scholar 

  13. D. Morancais, F. Fabre, “Incoherent Doppler Wind Lidar ADM Concept and Related Prototype,” Proceedings of the EUMETSAT Meteorological Satellite Data User’s Conference, Copenhagen, Denmark, Sept. 6–10, 1999, pp. 85–92

    Google Scholar 

  14. http://nssdc.gsfc.nasa.gov/nmc/sc-query.html

  15. E. W. Young, Jr., P. S. Caruso Jr., “Satellite temperature-flux monitor for low perigee applications,” ISA ASI 75225, 1975, pp. 133–143

    Google Scholar 

  16. P. S. Caruso Jr., C. R. Naegeli, “Low perigee aerodynamic heating during orbital flight of an Atmosphere Explorer,” NASA TM D-8308, Sept. 1976

    Google Scholar 

  17. M. P. McCormick, P. Hamill, T. J. Pepin, W. P. Chu, T. J. Swissler, L. R. McMaster, “Satellite Studies of the Stratospheric Aerosol,” Bulletin of the American Meteorological Society, Vol. 60,No. 9, September 1979, pp. 1038–1046

    Article  Google Scholar 

  18. L. R. McMaster, M. W. Rowland, “SAGE-I Data User’s Guide,” NASA Reference Publication 1275, Aug. 1992

    Google Scholar 

  19. Note: A photometer is usually a broadband instrument capable of measuring thermal continuum radiation (i.e. flux) thereby permitting the study of energy balance and surface composition (also detection of infrared roughness of surface features)

    Google Scholar 

  20. B. Bizzarri, P. Spera, E. Maggi, et al., “Instruments and system for CLOUDS — a Cloud and Radiation monitoring satellite,” the EOS/SPIE Symposium on Remote Sensing, Sept. 25–29, 2000, Barcelona, Spain, SPIE Vol. 4163–43

    Google Scholar 

  21. B. Bizzarri, M. Desbois, C. Stanfuss, J. Murray, J. Russell, C. Naud, A. Gasiewski, K. Künzi, et al., “Scientific background for CLOUDS — a Cloud and Radiation Monitoring Satellite”, the EOS/SPIE Symposium on Remote Sensing, Sept. 25–29, 2000, Barcelona, Spain, SPIE Vol. 4168–08

    Google Scholar 

  22. http://romatm9.phys.uniromal.it/pub/clouds/report/

  23. F. K. Li, E. Im, S. L. Durden, R. Girard, G. Sadowy, C. Wu, “Cloud Profiling Radar (CPR) for the CloudSat Mission,” Proceedings of IEEE/IGARSS 2000, Honolulu, HI, July 24–28, 2000

    Google Scholar 

  24. http://cloudsat.atmos.colostate.edU/cs.4.html

  25. G. L. Stephens, D. G. Vane, S. J. Walter, “The CloudSat Mission: A new Dimension to space-based Observations of Cloud in the coming Millennium,” paper presented at the GCSS-WGNE Workshop, Fort Collins, CO, Nov. 9–13, 1998

    Google Scholar 

  26. http://essp.gsfc.nasa.gov/cloudsat.html

  27. V. S. Dokukin, V. N. Oraevsky, et al., “The General Conception of the Microsatellite Compass to be launched from Submarine to the Study of Earthquake Forerunners,” Proceedings of the 2nd IAA Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 327–329

    Google Scholar 

  28. Information provided by Vladimir S. Dokukin of IZMIRAN, Troitsk, Russia

    Google Scholar 

  29. V. N. Oraevsky, V. S. Dokukin, V. A. Alekseev, Yu. Ra. Ruzhin, V. G. Degtiar, V. A. Danilkin, “The General Conception of the Microsatellite COMPASS to the Study of Earthquake Forerunners,” presented at the 11th Meeting of the US/Russian Earth Sciences Joint Working Group, April 23–26, 2001, Washington, D.C., USA

    Google Scholar 

  30. http://www.spectrumastro.com/PDFs/Coriolis.PDF

  31. http://windsat.pxd.com/

  32. K. M. St. Germain and P. W. Gaiser, “Space borne Polarimetric radiometer and the WindSat Coriolis mission,”,Proceedings of the IEEE Aerospace Conference, IEEE Catalog No. 00TH8484C, March 2000.

    Google Scholar 

  33. http://www.sr.bham.ac.uk/instrument/smei.html

  34. http://www.sr.bham.ac.uk/instrument/smei.html

  35. http://www.vs.afrl.af.mil/factsheets/SMEI.html

  36. B. V. Jackson, A. Buffington, P. Hick, S.W. Kahler, S. L. Keil, R. C. Altrock, G. M. Simnett, D. F. Webb, “The Solar Mass Ejection Imager,” Phys. Chem. Earth, 22, 441, 1997

    Article  Google Scholar 

  37. R. A. Cooper, D. H. Burks, “Space Physics Missions Handbook,” NASA, Office of Space Science and Applications, Feb. 1991

    Google Scholar 

  38. Special Section on CRRES, Journal of Spacecraft and Rockets, Vol. 29, No. 4 July-Aug. 1992, pp. 555–617

    Google Scholar 

  39. R. A. Hoffman, G. D. Hogan, R. C. Maehl, “Dynamics Explorer Spacecraft and Ground Operating Systems,” Space Science Instrumentation, 5, 1981, pp. 349–367

    Google Scholar 

  40. W. H. Farthing, L. J. Cahill, et al., “Magnetic Field Observations on DE-A and -B,” Space Science Instrumentation, 5, 1981, pp. 551–560

    Google Scholar 

  41. S. D. Shawhan, R. A. Helliwell, et al., “The Plasma Wave and Quasi-Static Electric Field Instrument (PWI) for Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 535–550

    Google Scholar 

  42. J. L. Burch, R. A. Hoffman, et al., “High-Altitude Plasma Instrument for Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 455–463

    Google Scholar 

  43. C. R. Chappell, J. H. Hoffman, et al., “The Retarding Ion Mass Spectrometer on Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 477–491

    Google Scholar 

  44. E. G. Shelley, et al., “The Energetic Ion Composition Spectrometer (EICS) for the Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 443–454

    Google Scholar 

  45. L. A. Frank et al., “Global Auroral Instrumentation for the Dynamics Explorer Mission,” Space Science Instrumentation 5, 1981, pp. 369–393

    Google Scholar 

  46. N. C. Maynard et al., “Instrumentation for Vector Electric Field Measurements from DE-B,” Space Science Instrumentation, 5, 1981, pp. 523–534

    Google Scholar 

  47. G. R. Carignan, et al., “The Neutral Mass Spectrometer on Dynamics Explorer B,” Space Science Instrumentation, 5, 1981, pp. 429–441.

    Google Scholar 

  48. N. W. Spencer, et al., “The Dynamics Explorer Wind and Temperature Spectrometer,” Space Science Instrumentation, 5, 1981, pp. 417–428

    Google Scholar 

  49. P. B. Hays, et al., “The Fabry-Perot Interferometer on Dynamics Explorer,” Space Science Instrumentation, 5, 1981, pp. 395–416

    Google Scholar 

  50. R. A. Heelis, W. B. Hanson, et al., “The Ion Drift Meter for Dynamics Explorer-B,” Space Science Instrumentation, 5, 1981, pp. 511–521

    Google Scholar 

  51. W. B. Hanson et al., “The Retarding Potential Analyzer for Dynamics Explorer-B,” Space Science Instrumentation, 5, 1981, pp. 503–510

    Google Scholar 

  52. J. P. Krehbiel, L. H. Brace, W. H. Pinkus, R. B. Kaplan, et. al., “The Dynamics Explorer Langmuir Probe Instrument,” Space Science Instrumentation, 5, 1981, pp. 493–502

    Google Scholar 

  53. J. D. Winningham, R. A. Hoffman, et al., “The Low Altitude Plasma Instrument (LAPI),” Space Science Instrumentation, 5, 1981, pp. 465–475

    Google Scholar 

  54. J. A. Dezio, G. A. Jensen, “Earth Radiation Budget Satellite,” in Monitoring Earth’s Ocean, Land, and Atmosphere, Vol. 97 by AIAA, 1985, pp. 261–292

    Google Scholar 

  55. Information provided by Jack Paden and Bob Lee of NASA/LaRC

    Google Scholar 

  56. URL: http://eosweb.larc.nasa.gov/HBDOCS/sensor_info.html

  57. B. R. Barkstrom and J. B. Hall, Jr., “Earth Radiation Budget Experiment (ERBE): An Overview”, J. Energy, Vol. 6, 1982, pp. 141–146

    Article  Google Scholar 

  58. D. M. Winker, B. A Wielicki, “The PICASSO-CENA Mission,” Part of the EUROPTO Conference on Sensors, Systems and Next Generation Satellites, Proceedings of SPIE, Vol. 3870, Florence, Italy, Sept. 20–24, 1999, pp. 26–36

    Google Scholar 

  59. J. Blouvac, B. Lazaed, J. M. Martinuzzi, “ CNES Small Satellites Earth Observation Scientific Future Missions”, IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 11–14

    Google Scholar 

  60. J. Reagan, D. Winker, “PICASSO-CENA: Combined Active-Passive Sensing from Space,” Proceedings of IGARSS’99, Vol. 1, pp. 240–242

    Google Scholar 

  61. D. M. Winker, “Global Observations of Aerosols and Clouds from combined Lidar and passive Instruments to improve Radiation Budget and Climate Studies,” The Earth Observer, Vol. 11, No 3, May/June 1999, pp. 22–25

    Google Scholar 

  62. http://www-picasso-cena.larc.nasa.gov/picasso.html

  63. D. Q. Robinson, “PICASSO-CENA Satellite-Based Research Mission: K-12 Education and Public Outreach (Student use of remote sensing for research validation),” Proceedings of the IEEE/IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000

    Google Scholar 

  64. H. Carvalho, “The French Brazilian Microsatellite,” Proceedings of the 51st IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000, IAA-00-IAA.11.1.04

    Google Scholar 

  65. M. N. Barbosa, S. Plattard, “New opportunities for international cooperation — FBM, a French-Brazilian microsatellite to study the sun,” CNES Magazine No 9, June 2000, pp. 33–34

    Google Scholar 

  66. Information provided by Himilcon Carvalho of INPE

    Google Scholar 

  67. Information provided by Christophe Bastien-Thiry of CNES

    Google Scholar 

  68. C. I. Grastataro, T. A. Butler, et al., “Development of a Composite Satellite Structure for FORTE,”. Proceedings of The Tenth International Conference on Composite Materials, Whistler, British Columbia, Canada, 1995,. LA-UR-95–1016

    Google Scholar 

  69. T. C. Thompson, C. I. Grastataro, et al., “Development of an All-Composite Spacecraft Bus for Small Satellite Programs,”. Proceedings of The Eighth Annual AIAA/USU Conference on Small Satellites, Logan, UT, 1994

    Google Scholar 

  70. K. K. Ruud et al., “FORTE Hardware-in-Loop Simulation,” Proceedings of AIAA/USU Conference on Small Satellites, 1997, pp. 1–9

    Google Scholar 

  71. http://nis-www.lanl.gov/nis-projects/forte_science/

  72. K. R. Moore, P.C. Blain, et al., “Classification of rf transients in space using digital signal processing and neural network techniques,”. Applications and Science of Neural Networks, Proceedings SPIE, Vol. 2492, pp. 995–1006, 1995

    Google Scholar 

  73. S. Briles, K. Moore, et al., “Innovative Use of DSP Technology in Space: FORTE Event Classifier,”. 1998

    Google Scholar 

  74. K. R. Moore, J. F. Wilkerson, et al., “A Space-based Classification System for RF Transients”. Proceedings of the International Workshop on Artificial Intelligence in Solar-Terrestrial Physics, Lund, Sweden, p. 205, 1993

    Google Scholar 

  75. A. R. Jacobson, S. O. Knox, et al., “FORTE observations of lightning radio-frequency signatures: Capabilities and basic results,” Radio Science, Vol. 34, 1999, pp. 337–354

    Article  Google Scholar 

  76. D. M. Suszcynsky, T. E. Light S. Davis, J. L. Green, et al., “Coordinated Observations of Optical Lightning from Space Using the FORTE Photodiode Detector and Imager,” Reg. LA-UR-00–341

    Google Scholar 

  77. M. W. Kirkland, et al., “Observations of terrestrial lightning at optical wavelengths by the photodiode detector on the FORTE satellite,” Rep. LA-UR-98–4098, LANL, 1998

    Google Scholar 

  78. S. Sobue, N. Tomii, T. Moriyama, et al., “NASDA’s Future Earth Observation Satellite Plan,” Proceedings of the IEEE/IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000

    Google Scholar 

  79. http://www.eorc.nasda.go.jp/GCOM/GCOM.PDF

  80. M. Suzuki, K. Shibasaki, H. Shimoda, T. Ogawa, “ Overview of GCOM-A1 Satellite Program,” Proceedings of the IEEE/IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000

    Google Scholar 

  81. K. Shibasaki, M. Suzuki, Y. Yamamoto, “Ozone Dynamics Ultraviolet Spectrometer (ODUS) on Board GCOM-A1,” Proceedings of the IEEE/IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000

    Google Scholar 

  82. A. Kuze, H. Nakajima, J. Tanii, Y. Sasano, “Conceptual Design of Solar Occultation FTS for Inclined-orbit Satellite (SOFIS) on GCOM-A1,” Proceedings of SPIE 45th Conference, San Diego, Jul. 30 to Aug. 4, 2000, Vol. 4131–30 (Remote Sensing and Infrared Systems), 2000

    Google Scholar 

  83. G. G. Shepherd, I. C. McDade, W. A. Gault, Y. I. Rochon, A. Scott, et al., “The Stratospheric Wind Interferometer for Transport Studies (SWIFT),” 33rd COSPAR Scientific Assembly, Warsaw, Poland, July 16–23, 2000

    Google Scholar 

  84. P. Slater, ‘Remote Sensing’ Optics and Optical Systems, Addison-Wesley, 1980, pp. 462–465

    Google Scholar 

  85. 445) HCMM System in ‘Manual of Remote Sensing,’ Second Edition, American Society of Photogrammetry, 1983, pp. 663–670

    Google Scholar 

  86. Megha means “cloud” in Sanskrit; Tropiques is the French word for “tropics.”

    Google Scholar 

  87. J. Blouvac, B. Lazaed, J. M. Martinuzzi, “ CNES Small Satellites Earth Observation Scientific Future Missions”, IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 11–14

    Google Scholar 

  88. J. P. Aguttes. J. Schrive, C. Goldstein, G. Raju, M. S. Narayanan, M. Desbois, “Megha-Tropiques, A Satellite for Studying the Water Cycle and Energy Exchanges in the Tropiques,” IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6,-2000

    Google Scholar 

  89. J. P. Aguttes, J. Schrive, Ch. Goldstein, M. Rouzé, G. Raju, “MEGHA-TROPIQUES, a satellite for studying the water cycle and energy exchanges in the tropics,” IEEE/IGARSS Conference 2000, Honolulu, HI, July 24–28, 2000

    Google Scholar 

  90. Illustration courtesy of Nadia Karouche of CNES

    Google Scholar 

  91. http://scarab.cnes.fr:8020/

  92. J. L. Monge, R. Kandel, L. A. Pakhomov, B. Bauche, “ScaRaB Earth radiation budget scanning radiometer,” SPIE, Vol. 1490, ‘Future European and Japanese Remote Sensing Programs,’ 1991

    Google Scholar 

  93. J. Mueller, et al., “Ground Characterization of the Scanner for Radiation Budget (ScaRaB) Flight Model 1,” Journal of Atmospheric and Oceanic Technology, Vol. 14, No 4, pp.802–813, 1997.

    Article  Google Scholar 

  94. F. v. Scheele, “Star Formation and Ozone Depletion: The Swedish ODIN Satellite to Eye Heaven and Earth,” Nordic Space Activities, No. 5, 1994, pp. 44–46

    Google Scholar 

  95. “ODIN — A Small Satellite for Astronomy and Atmospheric Research,” SSC/SNSB brochure

    Google Scholar 

  96. http://www.ssc.se/ssd/

  97. G. D. Warshaw, D. Desaulniers, D. Degenstein, “Optical Design and Performance of the ODIN UV/Visible Spectrograph and Infrared Imager Instrument,” Proceedings of the 10th Annual AIAA/Utah State University Conference on Small Satellites, Sept. 16–19, 1996

    Google Scholar 

  98. B. D. Boller, et al., “The Development of the Sea Winds Scatterometer Electronics Subsystem (SES),” Proceedings of IGARSS’96, Vol. 1, pp. 269–272

    Google Scholar 

  99. http://winds.jpl.nasa.gov/missions/quikscat/quikindex.html

  100. D. Freesland,et al., “GPS Based Attitude Determination, The REX II Flight Experience,” Proceedings of the 10th Annual AIAA/Utah State University Conference on Small Satellites, Sept. 16–19, 1996

    Google Scholar 

  101. E. G. Lightsey, E. Ketchum, T. W. Flatley, J. L. Crassidis, et al., “Flight Results of GPS Based Attitude Control on the REX-II Spacecraft,” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City, MO, pp. 1037–1046

    Google Scholar 

  102. L.C. Lee, C. Rocken, “Applications of Constellation Observing System for Meteorology, Ionosphere & Climate”, R. Kursinski (Ed.), Springer, 2000, ISBN 962–430–135–2

    Google Scholar 

  103. C. Rocken, Y. H. Kuo, W. S. Schreiner, D. Hunt, S. Sokolovskiy, C. McCormick, “COSMIC System Description,” Special issue of TAO (Terrestrial, Atmospheric and Oceanic Science), Vol. 11, No. 1, March 2000, pp.21–52

    Google Scholar 

  104. G. A. Hajj, L. C. Lee, X. Pi, L. J. Romans, et al., COSMIC GPS Ionospheric Sensing and Space Weather,” Special issue of TAO (Terrestrial, Atmospheric and Oceanic Science), Vol. 11, No. 1, March 2000, pp.235–272

    Google Scholar 

  105. Y. K. Kuo, L. C. Lee, “A Constellation of Microsatellites Promises to Help in a Range of Geoscience Research,” EOS Transcriptions, AGU, Vol. 80, No. 40, Oct. 5, 1999, pp. 467–471

    Article  Google Scholar 

  106. http://www.cosmic.ucar.edu/

  107. Information provided by Paul Chen of NSPO

    Google Scholar 

  108. The GPS radio occultation technique is based on the following principles: As a signal travels through the atmosphere it is retarded and bent. This results in a phase and Doppler shift, which can be measured very accurately by the GPS receiver aboard the LEO ROCSat-3/COSMIC satellites. Since the transmitter and receiver positions and velocities are accurately know from precise orbit determination, the signal bending angle alpha as a function of impact parameter, can be computed from the Doppler shift observed at LEO. From the basic bending angle versus impact parameter data, vertical profiles of refractivity as a function of tangent point radius can be derived. Further analysis converts refractivity to electron density in the ionosphere.

    Google Scholar 

  109. Payload Definition Document for SAN MARCO D/L Satellite, CRA, Oct. 1987

    Google Scholar 

  110. G. Schmidtke, H. Doll, C. Wita, and S. Chakrabarti, “Solar EUV/UV and equatorial airglow measurements from San Marco-5,” Journal of Atmospheric and Terrestrial Physics, Vol. 53, No. 8, pp. 781–785, 1991

    Article  Google Scholar 

  111. Jane’s Spaceflight Directory 1988–89, pp. 35–36

    Google Scholar 

  112. H. Dahl, W. Eliuk, G. Rumbold, R. Shelly, “ACE — A Canadian Small Satellite Mission,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-V-7

    Google Scholar 

  113. http://www.ace.uwaterloo.ca/

  114. I. Walkty, J. Petersen. T. Doherty, B. Whitehead, “SCISAT-1 ACE Mission C&DH Unit Development,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSCOO-I-5

    Google Scholar 

  115. P. Bernath, “Atmospheric Chemistry Experiment (ACE): An Overview,” Spectroscopy from Space, J.Demaison, editor, Klüver, 2001

    Google Scholar 

  116. http://lasp.colorado.edu/sorce/

  117. William McClintock, “2nd Science Team Meeting for the Solar Radiation and Climate Experiment — SORCE,” The Earth Observer, Nov./Dec. 2000, Vol. 12, No 6, pp.22–27

    Google Scholar 

  118. G. Rottman, G. Mount, G. Lawrence, T. Woods, J. Harder, S. Tournois, “Solar spectral Irradiance measurements: visible to near-infrared regions,” Metrologica, Vol 35, 1998, pp. 707–712

    Article  Google Scholar 

  119. Information provided by G. E. Cameron and by K. J. Heffernan of JHU/APL

    Google Scholar 

  120. http://www.timed.jhuapl.edu/

  121. D. Y. Kusnierkiewicz, “A description of the TIMED spacecraft,” American Institute of Physics (AIP) Conference Proceedings, 387, Part One, pp. 115–121, 1997

    Google Scholar 

  122. R. S. Bokulic, et al., “A Highly Integrated S-Band Transceiver System with Two-Way Doppler Tracking Capability,” Proceedings of AIAA/USU Conference on Small Satellites, 1997, pp. 1–8

    Google Scholar 

  123. A. A. Chacos, P. A. Stadter, W. S. Devereux, “Autonomous Navigation and Crosslink Communication Systems for Space Applications,” JHU/APL Technical Digest, Vol. 22, No 2, 2001, pp. 135–143

    Google Scholar 

  124. Ch. C. DeBoy, M. J. Reinhart, “A Flexible, Transceiver-based RF Communications System for Small Satellites,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2002, pp. 363–366

    Google Scholar 

  125. http://lasp.colorado.edu/see/see_instrument.html

  126. http://quiktoms.gsfc.nasa.gov/

  127. F. P. J. Valero, J. Herman, P. Minnis, W. D. Collins, R. Sadourny, W. Wiscombe, D. Lubin, K. Ogilie, “Triana — a Deep Space Earth and Solar Observatory,” Report prepared for the National Academy of Sciences by the Triana Science Team (SIO, NASA/GSFC, NIST, LaRC, ARC, NCAR, LMD, LM, LANL, VT).

    Google Scholar 

  128. J. G. Watzin, “The Triana Mission — A Pathfinder Mission to Explore the Utility of using Deep Space in Conducting Earth Observation,” Proceedings of the 51st IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000

    Google Scholar 

  129. S. A. W. Gerstl, F. P. J. Valero, “The Triana Satellite Mission from L1 for Global Vegetation Monitoring,” Proceedings of IEEE/IGARSS’99, Vol. I, Hamburg, June 28–July 2, 1999

    Google Scholar 

  130. http://triana.gsfc.nasa.gov/

  131. http://www.earth.nasa.gov/ebn/triana/index.html

  132. J. P. Rice, S. R. Lorentz, T. M. Jung, “The next generation of active cavity radiometers for space-based remote sensing,” 10th Conference on Atmospheric Radiation, Madison, WI, 1999, American Meteorological Society

    Google Scholar 

  133. “The Early Observing System Reference Handbook, ESAD Missions 1990–1997,” NASA/GSFC, pp. 62–64

    Google Scholar 

  134. T. Keating, T. Ryan, “Tropical Rainfall Measuring Mission (TRMM): US/Japan Science Operations,” AIAA-92–0594

    Google Scholar 

  135. T. Kozu, M. Kojima, K. Oikawa, K. Okamoto, T. Ihara, T. Manabe, “Development Status of Rain Radar for Tropical Rainfall Measuring Mission,” IEEE IGARSS ’92, Volume II, pp. 1722–1724

    Google Scholar 

  136. NASA paper provided by ESAD and OSSA.

    Google Scholar 

  137. T. Kozu, et al., “TRMM Precipitation Radar: Calibration and Data Collection Strategies,” Proceedings of IGARSS ’94, Volume IV, pp. 2215–2217

    Google Scholar 

  138. Courtesy of K. Maeda, NASDA

    Google Scholar 

  139. EOS Reference Handbook, NASA/GSFC, 1993

    Google Scholar 

  140. Z. Kawasaki, S. Yoshihashi, “TRMM/LIS observations of Lightning Activity,” Proceedings of the 11th International Conference on Atmospheric Electricity (ICAE), June 7–11, 1999, NASA/CP-1999–209261, pp. 176–179

    Google Scholar 

  141. http://thunder.nsstc.nasa.gov/lis/

  142. “UARS Seen as Earth Observing System’s Dress Rehearsal,” Space News September 9–15, 1991, p. 24

    Google Scholar 

  143. Portion of a UARS publication put out by NASA (provided by B. Needham of NOAA)

    Google Scholar 

  144. “Upper Atmosphere Research Satellite,” Summaries of papers presented at the Optical Remote Sensing of the Atmosphere Topical Meeting, Feb. 12–15, 1990, Optical Society of America, Volume 4, pp. 1–22

    Google Scholar 

  145. “Wind Imaging Interferometer (WINDII) for the UARS Mission,” Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. PD3–1 to 4

    Google Scholar 

  146. W. A. Gault, W. E. Ward, et al., “Optical Doppler Imaging of Atmospheric Winds,” Proceedings of IGARSS’99, Vol. III, Hamburg, Germany, June 28 — July 2, 1999, pp. 1612–1615

    Google Scholar 

  147. W. A. Gault, W. E. Ward, et al.“Windii To Read Upper Atmosphere In Depth,” Space News September 16–22, 1991, p. 8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kramer, H.J. (2002). Atmosphere/Radiation/Aeronomy Missions. In: Observation of the Earth and Its Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56294-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56294-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62688-3

  • Online ISBN: 978-3-642-56294-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics